ارزیابی عملکرد روش پردازش تصویر در تخمین میزان غلظت رسوبات معلق سطحی در مناطق ساحلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار/ دانشگاه آزاد اسلامی جویبار

2 استادیار گروه کامپیوتر، دانشگاه آزاد اسلامی، واحد جویبار

چکیده

سنجش میزان غلظت رسوبات در سواحل در راستای تحقق طرح‌های مدیریت سواحل از اهمیت ویژه‌ای برخوردار است و جریان‌های ساحلی خصوصاً جریان‌هایی که در اثر شکست امواج در سواحل میانه ایجاد می‌شوند، یکی از مهم‌ترین پدیده‌ها در انتقال رسوبات و انتشار آلودگی‌ها در دریاها و محیط‌های ساحلی محسوب می‌شوند. در این تحقیق در مرحله نخست الگوی پیچیده این جریان‌ها در سواحلی با حالت میانه در شرایط آزمایشگاهی اجرا شد. سپس با استفاده از روابط تجربی حاکم، غلظت رسوبات در هر اجرا تحت مکانیزم تعلیق رسوبات در اثر حرکت تلاطمی ناشی از امواج شکست یافته مورد محاسبه قرار گرفت. در گام بعدی با استفاده از اصول پردازش تصویر در نرم‌افزار متلب ویژگی‌های رنگی تصاویر در اعماق و شرایط هیدرودینامیکی مختلف جهت تخمین میزان غلظت رسوبات معلق استخراج شد. نتایج اصلی این تحقیق بیانگر همبستگی بالای ویژگی‌های رنگی تصاویر بر اساس الگوریتم‌های ارائه‌شده در مدل‌های RGB و Grayscale با میزان غلظت رسوبات منطقه است. دقت نتایج ارائه‌شده در بخش‌های مختلف منطقه نزدیک به ساحل گویای این واقعیت است که از دقت نتایج مدل با حرکت به سمت صورت ساحل کاسته می‌شود و بیشترین برازش ویژگی‌های تصاویر و میزان غلظت رسوبات در ناحیه کم‌عمقی رؤیت شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Performance of the Image Processing Method in Estimating the Concentration of Surface Suspended Sediments in Coastal Zones

نویسندگان [English]

  • Azadeh Valipour 1
  • Hossein Shirgahi 2
1 Department of Marine Science and Technology, Jouybar Branch, Islamic Azad University, Jouybar, Iran.
2 Department of Computer Engineering, Jouybar Branch, Islamic Azad University, Jouybar, Iran.
چکیده [English]

Measuring the concentration of sediments on beaches is of particular importance in line with the implementation of beach management plans. Coastal currents, especially those caused by breaking waves on the intermediate beaches, are considered one of the most important phenomena in the sediments transport and pollutant emissions in seas and coastal environments. In this research, first the complex pattern of these currents was implemented in beaches with an intermediate state in laboratory conditions. Then, using the governing empirical formulas, the concentration of sediments in each run was calculated under the sediment suspension mechanism due to the turbulent movement caused by broken waves. In the next step, using image processing principles in the Matlab software, the color characteristics of the images at different depths and hydrodynamic conditions were extracted to estimate the surface Suspended Sediment Concentration. The main results of this research show the high correlation of the color features of the images with the concentration of sediments in the area based on the algorithms presented in the RGB and Grayscale models. The accuracy of the results presented in different parts of the near shore zone indicates the fact that the accuracy of the model results decreases by moving towards the beach face and the best fit of the features of the images and the amount of sediment concentration is seen in the shoaling region.

کلیدواژه‌ها [English]

  • suspended sediment concentration
  • intermediate beaches
  • image processing
  • nearshore zone
  • shoaling region
[1] Jackson DWT, Short A. Sandy Beach Morphodynamics. Elsevier, Amsterdam; 2020. p. 104.
[2] Chang CK, Hwang CH. Studies on Wave, Current and Suspended Sediment Characteristics at the Surf Zone. Coastal Dynamics’95, ASCE; 1995. p. 728–38.
[3] Ifuku M, Kakinuma T. Suspended sediment concentration in the surf zone. In: 21th ICCE, Chap23, ASCE; 1988. p. 1661–75.
[4] Castelle B, Scott T, Brander RW and McCarroll RJ. Rip current types, circulation and hazard; Earth Sci. Rev.2016;163:1–21.
 [5] Safari M, Mansoury D, Azarmsa SA. Grain-size characteristics of seafloor sediment and transport pattern in the Caspian Sea (Nowshahr and Babolsar coasts). International Journal of Coastal Offshore Engineering. 2022; 7(1): 34-42.
[6] Mansoury D. An investigation of sediments grain size in the coastal area of Noor. Research in Marine Sciences. 2018; 3(1): 259-68.
 [7] Pilotti M, Menduni G, Castelli E. Monitoring the inception of sediment transport by image processing techniques. Experiments in Fluids. 1997;23:202–8.
[8] Pina P, Lira C. Sediment image analysis as a method to obtain rapid and robust size measurements. Journal of Coastal Research. 2009; (SPEC. ISSUE 56): 1562-6.
[9] Vangla P, Latha GM. Influence of Particle Size on the Friction and Interfacial Shear Strength of Sands of Similar Morphology. International Journal of Geosynthetics and Ground Engineering. 2015;1:6.
[10] Shin B, Kim KH. Analysis of wave-induced current using digital image correlation techniques. Journal of Sensors. 2018; 1-6.
[11] Bejestan MS, Nouroozpour S. Use of image processing technique to estimate sediment concentration. Journal of Applied Sciences. 2007; 7(20): 3096–100.
[12] Kang W, Lee K, Kim J. Prediction of Suspended Sediment Concentration Based on the Turbidity–Concentration Relationship Determined via Underwater Image Analysis. Applied Sciences. 2022; 12, 6125.
[13] Maciel D, Novo E, Sander De Carvalho L, Barbosa C, Flores Júnior R, de Lucia Lobo F. Retrieving total and inorganic suspended sediments in Amazon floodplain lakes: A multisensor approach. Remote Sensing. 2019; 11(15).
[14] Pereira FJS, Costa CAG, Foerster S, Brosinsky A, de Araújo JC. Estimation of suspended sediment concentration in an intermittent river using multi-temporal high-resolution satellite imagery. Int J Appl Earth Obs Geoinformation. 2019;79:153–61.
[15] Jayaratne MPR, Shibayama T. Suspended sediment concentration on beaches under three different mechanisms. Coastal Engineering Journal. 2007; 49(4): 357–92.
[16] Sleath JFA.The Suspended of Sand by Waves. J. Hydraul. Res. 1982; 20: 439–51.
[17] Nielsen P. Suspended Sediment Concentrations under Waves. Coastal Engineering, Elsevier. 1986; 10: 23–31.
[18] Nielsen P. Three Simple Model of Sediment Transport. Coastal Engineering, Elsevier. 1988; 12: 43–62.
[19] Shibayama T, Rattanapitikon W. Vertical distribution of suspended sediment concentration in and outside surf zone. Coastal Engineering in Japan. 1993; 36(1): 49–65.
[20] Rattanapitikon W, Shibayama T. Suspended Sediment Concentration Profiles under Non-breaking and Breaking Waves. Proceedings of 24th International Conference on Coastal Engineering, ASCE; 1994: 2813–27.
[21] Nielsen P. Coastal Bottom Boundary Layers and Sediment Transport. In Advanced Series on Ocean Engineering; World Scientific Publishing: Singapore. 1992; 4: 1-131.
[22] Okayasu A. Characteristics of Turbulence Structure and Undertow in Surf Zone[PhD thesis].University of Tokyo, Japan; 1989.
[23] Thornton EB, Guza R. Transformation of wave height distribution. Journal of Geophysical Research. 1983; 88: 5925–83.
[24] Sato S, Homma K, Shibayama T. Laboratory Study on Sand Suspension due Breaking Waves. Coastal Engineering in Japan, JSCE. 1990;33(2): 219–31.
[25] Rubey WW. Settling Velocities of Gravel, Sand and Silt Particles. American Journal of Science. 1933; 25: 325–38.
[26] Hwang C, Tsai L, Lin P, Tsai C . Studies on the Suspended Concentration in the Surf Zone. 25th International Conference on Coastal Engineering; 1996 (83). p.4088–97.
[27] Gonzalez RC, Woods RE. Digital Image Processing. Third Edition, USA: Prentice Hall, Upper Saddle River, NJ,; 2006.
[28] Gonzalez JC, Salazar ÒDC. Image Enhancement with Matlab Algorithms. Blekinge Institute of Technology Department of Applied Signal Processing SE-371 79, Karlskrona Sweden; 2016. p.1–51.
[29] Westland S, Cheung V. RGB Systems, in Handbook of Visual Display Technology, Chen J, Cranton W and Fihn M (eds.), Springer-Verlag; 2012. p. 147-54.
 [30] Plataniotis KN, Venetsanopoulos AN. Color Image Processing and Applications. Springer-Verlag, Berlin; 2000.