برآورد نیروی‌ موج وارد بر دیوارهای دریایی متخلخل پلکانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی، گروه اقیانوس شناسی، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار

2 مرکز هواشناسی و اقیانوس شناسی چابهار

چکیده

در این مطالعه، نیروی ناشی از موج وارد بر دیوارهای دریایی متخلخل پلکانی به صورت تجربی با استفاده از مدل‌سازی فیزیکی مورد بررسی قرار گرفت. امواج منظم در طیف گسترده‌ای از ارتفاع‌ها و دوره‌های تناوب موج استفاده شدند. آزمایش‌ها برای عمق ثابت آب 375/0 متر و شیب‌های مختلف دیوار دریایی متخلخل (یعنی ̊ 45، 60، 75 ، 90 =θ ) انجام شدند. مشخص شد که پارامترهای عمق‌نسبی آب، تیزی موج، شیب دیوار دریایی و پارامتر تشابه شکست در پیش‌بینی بیشینه نیروی موج (Fm) مؤثر هستند. مقادیر Fm برای دیوارهای دریایی با وجه پله‌ای در محدوده‌ 1/4-7/16 نیوتن و برای دیواره‌ متخلخل قائم در محدوده‌ 8/3-6/12 نیوتن قرار دارد. مقایسه مقادیر Fm اندازه‌گیری شده برای دیوارهای دریایی نشان داد که نیروی ناشی از امواج وارد بر دیوارهای با وجه پله‌ای حدود 18 درصد بیشتر از دیواره‌ قائم است. بنابراین دیوارهای دریایی با وجه پله‌ای نسبت به دیوار قائم در جذب و استهلاک انرژی موج برخوردی عملکرد بهتری دارند. بر اساس داده‌های اندازه‌گیری‌شده، تحلیل ابعادی و آنالیز رگرسیون غیر خطی، روابط تجربی جدیدی برای پیش‌بینی بیشینه نیروی موج ارائه شده است. این فرمول‌ها با استفاده از نرم‌افزار SPSS بر اساس نتایج تجربی صحت‌سنجی شدند. یافته‌های تحقیق حاضر می‌تواند برای بهینه‌سازی معیارهای طراحی دیوارهای دریایی شیبدار برای حفاظت از ساحل در برابر فرسایش مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Wave Force Acting on Stepped Porous Seawall

نویسندگان [English]

  • Mehdi Esmaeili 1
  • ُSaeed Farhadypoor 2
1 Department of oceanography, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran
2 Oceanography and Meteorology Center of Chabahar
چکیده [English]

In this study, the wave-induced force acting on stepped-face porous seawalls was investigated experimentally using physical modeling. Regular waves in a wide range of heights and intervals were investigated. Tests were carried out for a constant water depth of 0.375m and for different inclinations of porous seawall (i.e. θ = 90, 75, 60 and 45 ̊). It was inferred that the factors of relative water depth, wave steepness, the slope of seawall and the surf similarity parameter were effective in predicting the maximum wave force (Fm). The values of Fm for stepped-face seawalls ranged from 3.8–12.8N, and for the vertical porous seawall it was 4.1–16.7N. Comparison the measured values of Fm for different seawalls revealed that the wave-induced forces acting on the stepped-face walls were heavier than the vertical porous wall about 18%. Therefore, the stepped-face seawalls have a better performance compared with the vertical wall in absorbing and dissipating wave energy. Based on the measured data, dimensional analysis and nonlinear regression analysis, new empirical relations are proposed to predict the maximum wave force. These findings were calibrated using SPSS based on the experimental results. The findings of the present investigation can be applied to optimize the design criteria of sloped seawalls for shore protection from erosion.
 

کلیدواژه‌ها [English]

  • Wave force
  • Stepped seawall
  • Laboratory modelling
  • Regular waves
[1] Dang BL, Nguyen-Xuan H, Abdel Wahab M. Numerical study on wave forces and overtopping over various seawall structures using advanced SPH-based. Engineering Structures. 2021;226:1-9.
[2] Koraim AS, Heikal EM, Abo Zaid AA. Hydrodynamic characteristics of porous seawall protected by submerged breakwater. Applied Ocean Research. 2014; 46:1-14.
[3] El-Alfy KS, Rageh OS, Nassar KA. Wave hydrodynamic characteristics of vertical and sloped seawalls. Mansoura Engineering Journal. 2015;40(1):1-18.
[4] ایروانی نیکتا، منتظری‌نمین مسعود. مدل‌سازی عددی اندرکنش موج با دیوار متخلخل ساحلی در فضای دوبعدی قائم. نشریه مهندسی دریا. 1392; 9(17): 15-26.
[5] وفایی‌پور سرخابی رامین، امین‌فر محمدحسین، لطف‌اللهی یقین محمدعلی. بررسی عددی شیب بهینه دیوارهای ساحلی در مواجهه با امواج تصادفی دریایی با استفاده از نرم‌افزار SACS. نشریه مهندسی عمران و محیط‌زیست. 1390;40(3): 37-48.
[6] Neelamani S, Schüttrumpf H, Muttray, M, Oumeraci H. Prediction of wave pressures on smooth impermeable seawalls. Ocean Engineering. 1999;26(8):739-765.
[7] Chiu YF, Lin JG, Chang SC, Lin YJ, Chen, CH. An experimental study of wave forces on vertical breakwater. Journal of Marine science and technology. 2007;15(3):158-170.
[8] Ji CH, Oh SH, Oh YM, Jang SC, Lee DS. Experimental investigation of horizontal wave forces on the perforated caisson with single and double wave chambers. Proceedings of the 34th international conference on coastal engineering. Seoul, South Korea. 2014;321-329.
[9] Alkhalidi M, Neelamani S, Assad A. Wave pressures and forces on slotted vertical wave barriers. Ocean Engineering. 2015;108:578-583.
[10] Neelamani S, Al-Anjari N. Experimental investigations on wave induced dynamic pressures over slotted vertical barriers in random wave fields. Ocean Engineering. 2021; 220:1-15.
[11] Mokhtar ZA, Mohammed TA, Yusuf B, Lau TL. Experimental investigation of tsunami bore impact pressure on a perforated seawall. Applied Ocean Research. 2019;84:291–301.
[12] Ning D, Wang R, Chen L, Li J, Zang J, Cheng L, Liu S. Extreme wave run-up and pressure on a vertical seawall. Applied Ocean Research. 2017;67:188–200.
[13] راه‌بانی مریم، اسماعیلی مهدی، کرمی‌‌خانیکی علی. عملکرد دیوارهای ساحلی صندوقه‌ای در برابر نیروی امواج. نشریه اقیانوس‌شناسی. 1396; 8(31) : 11-18.
[14] Ozgur VS, Kabdasli MS. Reduction of non-breaking wave loads on caisson type breakwaters using a modified perforated configuration, Ocean Engineering. 2009;36(17): 1316–1331.
 [15] Munireddy MG, Neelamani S. Wave pressure reduction on vertical seawalls/caissons due to an offshore breakwater. Indian Journal of Marine Sciences. 2004;33(4):329-337.
[16] Chowdhury S, MG, Anand KV, Sannasiraj SA, Sundar V. Nonlinear wave interaction with curved front seawalls. Ocean Engineering. 2017;140:84-96.
[17] Md Noar NAZ, Elliott-Sands M, Greenhow M. Wave impacts on structures with rectangular geometries:Part 1. Seawalls. Applied Ocean Research. 2015;53:132-141.
[18] Md Noar NAZ, Greenhow M. Wave impacts on structures with rectangular geometries: Part 2 decks, baffles and seawalls with impermeable or porous surfaces. Applied Ocean Research. 2019;90:1-18.
[19] Dhinakaran G, Sundar V, Sundaravadivelu R, Graw KU. Dynamic pressures and forces exerted on impermeable and seaside perforated semicircular breakwaters due to regular waves. Ocean Engineering. 2002;29:1981-2004.
[20] Hughes SA. Physical models and laboratory techniques in Coastal Engineering. Singapore: Advanced Series on Ocean Engineering, World Scientific Publishing; 1993. p.568.