تحلیل عددی دریفتر لاگرانژی نوع SVP و بررسی تاثیرات مشخصه‌های هندسی بر عملکرد آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع دانشگاهی هوادریا، دانشگاه صنعتی مالک اشتر

2 دانشگاه صنعتی شیراز، دانشکده مهندسی مکانیک و هوافضا

چکیده

در این مقاله به‌منظور بررسی تأثیر ویژگی‌های هندسی یک دریفتر لاگرانژی بر عملکرد آن در شرایط جریان در خلیج‌فارس، انواع دریفترهای SVP با استفاده از محیط محاسباتی سه‌بعدی تجزیه‌وتحلیل شده‌اند. با مشاهده و بررسی شکل جریان در اطراف حفره‌های جانبی و داخلی دراگو مشخص شد که وجود حفره روی دراگو باعث توزیع یکنواخت نیروهای فشاری و لزجت در سطح دراگو می‌شود. اگر از سیلندر بدون حفره به‌عنوان دراگو استفاده شود، به‌خصوص در جریان‌های با سرعت‌بالا، شاهد کاهش قابل‌توجهی در ضریب پسا و لغزش خواهیم بود.  افزایش تعداد حفره­ ها بر روی دراگو تأثیر چندانی در عملکرد دریفتر نخواهد داشت و مؤثرترین عامل تغییرات قطر و ارتفاع دراگو هستند. به‌گونه‌ای که افزایش 30 درصدی قطر دراگو سبب افزایش 90 درصدی ضریب پسا می­شود. به‌طورکلی با بررسی کانتور و بردار سرعت جریان مشخص شد که طراحی هندسه دراگو دریفتر باید به‌صورتی باشد که در پشت دراگو گردابه­ های چرخشی جریان با شعاع کوچک‌تر شکل گیرد و این گردابه­های کوچک سبب توزیع یکنواخت نیروهای هیدرودینامیکی در سطح دراگو و جلوگیری از لغزش دریفتر در تغییرات سرعت ناگهانی جریان­ ها می­شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of the lagrangian SVP drifter and investing the effect of the geometry’s characteristic on its performance

نویسندگان [English]

  • Nader Kharestani 1
  • Milad Peymani 2
  • Mohammad Reza Khalilabadi 1
1 Faculty of Naval Aviation, Malek Ashtar University of Technology
2 Shiraz University of Technology, Department of Mechanical and Aerospace Engineering
چکیده [English]

In this paper, different types of SVP drifters are analyzed by using a three-dimensional computational environment to investigate the effect of geometrical characteristics of a Lagrangian drifter on its performance in the flow conditions in the Persian Gulf. By observing and examining the shape of the flow around the lateral and internal cavities of the Drago, it is concluded that the presence of cavities on the Drago causes a uniform distribution of compressive and viscous forces on the surface of the Drago. If a holeless cylinder is used as a Drago, a significant reduction in drag and slip coefficient is seen, especially at high-velocity currents. Increasing the number of holes on the Drago will not have much effect on the drifter performance and the most effective factors are changing the diameter and height of the Drago. Thus, a 30% increase in the diameter of the Drago increases the drag coefficient by 90%. In general, by examining the contour and flow velocity vector, it is found that the geometry design of Drago Drifter should be such that behind the drag, the smaller radius flow vortices are formed, and these small vortices cause uniform distribution of hydrodynamic forces on the surface of the Drago and prevent the drifter from slipping in sudden changes in current velocity.

کلیدواژه‌ها [English]

  • lagrangian drifter
  • drag coefficient
  • SVP drifter
  • holey-sock drogue
  • hydrodynamic force
  • flow vortices
[1] Lumpkin R, Özgökmen T, Centurioni L. Advances in the application of surface drifters. Annual Review of Marine Science. 22017 Jan 3;9:59-81.
[2] Hosseini SH, Akbarinasab M, Khalilabadi MR. Numerical simulation of the effect internal tide on the propagation sound in the Oman Sea. Journal of the Earth and Space Physics. 2018 Apr 21;44(1):215-25.
[3]    Ghorbani A, Khalilabadi MR. Positioning Using Classification and Regression: Case study of Oman Sea. International Journal of Coastal and Offshore Engineering. 2020 Oct 10;4(3):35-41..
[4]    Khalilabadi MR. Underwater Terrain and Gravity aided inertial navigation based on Kalman filter. International Journal of Coastal and Offshore Engineering. 2020 Oct 10;4(3):15-21.
[5]    Khalilabadi MR, Shojaeezadeh SA, Dehghani Ashkzari G. Estimation of Flow Velocity Using Entropy Theory and Verification by Experimental Flume and Natural Rivers Data. Hydrophysics. 2020 Aug 22;6(1):21-34.
[6]    Khalilabadi MR. The effect of meteorological events on sea surface height variations along the northwestern Persian Gulf. Current Science (00113891). 2016 Jun 10;110(11).
[7]    Khalilabadi MR, Sadrinassab M, Chegini V, Akbarinassab M. Internal Wave Generation in the Gulf of Oman (Outflow of Persian Gulf).2015;44(3):371-75.
[8] Mahpeykar O, Khalilabadi MR. Numerical modelling the effect of wind on Water Level and Evaporation Rate in the Persian Gulf. International Journal of coastal and offshore engineering. 2021 Oct 10;5(1):47-53.
[9]    Mollaesmaeilpour S, Mohammad Mahdizadeh M, Hasanzade E, Khalilabadi MR. The Study of Hydrophysical Properties of the Northern Arabian Sea During Monsoon: a Numerical Study. Hydrophysics. 2019 Aug 23;5(1):47-59.
[10]  Lumpkin R, Johnson GC. Global ocean surface velocities from drifters: Mean, variance, El Niño–Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans. 2013 Jun 1;118(6):2992-3006.
[11]  Richardson PL. Agulhas leakage into the Atlantic estimated with subsurface floats and surface drifters. Deep Sea Research Part I: Oceanographic Research Papers. 2007 Aug 1;54(8):1361-89.
[12]  Niiler PP. A brief history of drifter technology. InAutonomous and Lagrangian Platforms and Sensors Workshop. La Jolla, CA, Scripps Institution of Oceanography; 2003 Apr.
[13]  Niiler PP, Paduan JD, Sybrandy AL, Sombardier L. The WOCE/TOGA Lagrangian surface drifter. InOCEANS 91: ocean technologies and opportunities in the Pacific for the 90's; October 1-3, 1991; Honolulu HI 1991.
[14]  Lumpkin R, Grodsky SA, Centurioni L, Rio MH, Carton JA, Lee D. Removing spurious low-frequency variability in drifter velocities. Journal of Atmospheric and Oceanic Technology. 2013 Feb;30(2):353-60.
[15]  Lumpkin R, Centurioni L, Perez RC. Fulfilling observing system implementation requirements with the global drifter array. Journal of Atmospheric and Oceanic Technology. 2016 Apr;33(4):685-95..
[16]  Centurioni L, Horányi A, Cardinali C, Charpentier E, Lumpkin R. A global ocean observing system for measuring sea level atmospheric pressure: Effects and impacts on numerical weather prediction. Bulletin of the American Meteorological Society. 2017 Feb 1;98(2):231-8.
[17]  D'Asaro EA, Black PG, Centurioni LR, Chang YT, Chen SS, Foster RC, et al. Impact of typhoons on the ocean in the Pacific. Bulletin of the American Meteorological Society. 2014 Sep 1;95(9):1405-18.
[18]  Chang Y, Hammond D, Haza AC, Hogan P, Huntley HS, Kirwan Jr AD, Lipphardt Jr BL, Taillandier V, Griffa A, Özgökmen TM. Enhanced estimation of sonobuoy trajectories by velocity reconstruction with near-surface drifters. Ocean Modelling. 2011 Jan 1;36(3-4):179-97.
[19] Niller PP, Davis RE, White HJ. Water-following characteristics of a mixed layer drifter. Deep Sea Research Part A. Oceanographic Research Papers. 1987 Nov 1;34(11):1867-81.
[20]  Menna M, Poulain PM, Bussani A, Gerin R. Detecting the drogue presence of SVP drifters from wind slippage in the Mediterranean Sea. Measurement. 2018 Sep 1;125:447-53.
[21] Sybrandy AL, Niiler PP, Martin C, Scuba W, Charpentier E, Meldrum DT. Global drifter programme barometer drifter design reference. DBCP Report. 2009 Aug;4.
[22] Fluent AN. Release 16.0, Theory Guide; ANSYS. Inc.: Canonsburg, PA, USA. 2015.
[23]  Zhou B, Wang X, Guo W, Gho WM, Tan SK. Control of flow past a dimpled circular cylinder. Experimental Thermal and Fluid Science. 2015 Dec 1;69:19-26.
[24]  Paduan JD, Rosenfeld LK. Remotely sensed surface currents in Monterey Bay from shore‐based HF radar (Coastal Ocean Dynamics Application Radar). Journal of Geophysical Research: Oceans. 1996 Sep 15; 101(C9): 20669-86.