شبیه سازی سه بعدی تغییرات فصلی متغیرهای بیولوژیکی خلیج فارس با استفاده از یک مدل NPZD

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران

2 دانشگاه آزاد اسلامی واحد علوم تحقیقات تهران

3 گروه علوم دریایی، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات

چکیده

در این پژوهش از یک مدل جفت شده فیزیکی – بیولوژیکی ROMS به منظور بررسی تغییرات فصلی پارامتر های بیولوژیکی خلیج فارس استفاده شده است. مدل بیولوژیکی دارای هفت متغیر حالت شامل دو ماده مغذی ، فیتوپلانکتون، کلروفیل، زئوپلانکتون و دو دترایتوس کوچک و بزرگ ( N2PChlZD2) است. نتایج اجرای مدل حاکی از این است که الگوی تغییرات ماهانه کلروفیل آ در خلیج فارس را می توان به دو منطقه تفکیک کرد. منطقه اول بخش شمال غربی است که رشد کلروفیل آ در آن از بهار آغاز می شود و تا اواخر تابستان و اوایل پاییز در امتداد سواحل جنوبی به طرف شرق گسترش می یابد و مقدار کلروفیل آ این منطقه در تمام طول سال بیشتر از سایر مناطق است و پیک آن در اوایل بهار می باشد. منطقه دوم که شامل بخش های میانی خلیج فارس و تنگه هرمز است در تابستان بارور می شود و پیک مقدار آن در اواخر تابستان تا اوایل پاییز می باشد. نتایج همچنین نشان می دهند که الگوی رشد و گسترش کلروفیل آ در خلیج فارس دارای یک استقلال نسبی از الگوی تغییرات فصلی کلروفیل آ دریای عمان است و تغییرات کلروفیل آ آن از الگوی جریانات خلیج فارس تبعیت می کند. علاوه بر این مدل نشان می دهد که در شمال غربی خلیج فارس مقدار نیترات از غلظت بالایی برخوردار است که علتی برای شروع رشد شکوفه های فیتوپلانکتونی از بخش شمال غربی خلیج فارس و گسترش آن به سایر مناطق همراه با جریان های منطقه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional Simulation of Seasonal variations of the Biogeochemical Parameters in the Persian Gulf using an NPZD Model

نویسندگان [English]

  • Hassan Akbarinia 1
  • Mojtaba Ezam 2
  • P Ghavam Mostafavi 3
1 Science and research branch, Islamic Azad university,Tehran
2 Department of Marine Sciences, Science and Research Branch, Islamic Azad University
3 Department of Marine Science, Science and Research Branch. Islamic Azad University
چکیده [English]

In this study, to investigate the seasonal changes in some biological parameters of the Persian Gulf, a coupled physical-biological ROMS model is used. The biological model coupled with the physical model has seven state variables includes two nutrients, phytoplankton, chlorophyll, zooplankton and small and large detritus (N2PChlZD2). The results show that the pattern of seasonal changes in chlorophyll-a in the Persian Gulf can be divided into two regions. The first region is the northwestern part, where the growth of chlorophyll begins in spring and extends eastwards along the southern coasts until late summer and early autumn. The amount of chlorophyll-a in this region throughout the year is higher than the other parts of the Gulf and also peaks in early spring. The second region, which includes the middle and east parts of the Persian Gulf blooms in summer and peaks from late summer until early autumn. Moreover the results also show that the pattern of growth and expansion of chlorophyll-a in the Persian Gulf are independent of the Sea of Oman pattern, and its changes follow the pattern of Persian Gulf currents. In addition, the results show that there is a high concentration of nitrate in the northwest of the Persian Gulf, that it is a good reason for beginning of the phytoplankton blooms from the northwestern part of the Persian Gulf and its extension to the other parts along with the regional currents.

کلیدواژه‌ها [English]

  • Numerical modelling
  • Chlorophyll
  • Bio-geo-chemical parameters
  • Nutrient
  • Persian Gulf
[1] Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, et al. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Research Part II: Topical Studies in Oceanography. 2002 Jan 1;49(9-10):1601-22.
[2] Molina E. Controls on Southern Ocean phytoplankton production: a systems approach [dissertation]. University of Tasmania; 2012.
[3] Fasham MJ, Ducklow HW, McKelvie SM. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research. 1990 Aug 1;48(3):591-639.
[4] Fennel K, Wilkin J, Levin J, Moisan J, O'Reilly J, Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: Results from a three‐dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochemical Cycles. 2006 Sep;20(3).
[5] Gutknecht E, Dadou I, Vu BL, Cambon G, Sudre J, Garçon V, Machu E, Rixen T, Kock A, Flohr A, Paulmier A. Coupled physical / biogeochemical modeling including O 2-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela. Biogeosciences. 2013 Jun 3;10(6):3559-91.
[6] Powell TM, Lewis CV, Curchitser EN, Haidvogel DB, Hermann AJ, Dobbins EL. Results from a three‐dimensional, nested biological‐physical model of the California Current System and comparisons with statistics from satellite imagery. Journal of Geophysical Research: Oceans. 2006 Jul;111(C7).
[7] Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development. 2015 Aug 13;8(8):2465-513.
[8] Sedigh Marvasti S, Gnanadesikan A, Bidokhti AA, Dunne JP, Ghader S. Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman. Biogeosciences. 2016 Feb 23;13(4):1049-69.
[9] Sharifinia M, Penchah MM, Mahmoudifard A, Gheibi A, Zare R. Monthly variability of chlorophyll-α concentration in Persian Gulf using remote sensing techniques. Sains Malaysiana. 2015 Mar 1;44(3):387-97.
[10] Aberle N, Piontkovski SA. Seasonal dynamics of microzooplankton communities in the Sea of Oman. Aquatic Ecosystem Health & Management. 2019 Apr 3;22(2):131-40.
[11] Hamzei S, Bidokhti AA, Mortazavi MS, Gheibi A. Utilization of satellite imageries for monitoring harmful algal blooms at the Persian Gulf and Gulf of Oman. In:2012 Int Conf Environ Biomed Biotechnol IPCBEE 2012 (Vol. 41, pp. 171-174).
[12] Emery KO. Sediments and water of Persian Gulf. AAPG Bulletin. 1956 Oct 1;40(10):2354-83.
[13] Thoppil PG, Hogan PJ. A modeling study of circulation and eddies in the Persian Gulf. Journal of Physical Oceanography. 2010 Sep;40(9):2122-34.
[14] Pous S, Carton XJ, Lazure P. A process study of the wind-induced circulation in the Persian Gulf. Open Journal of Marine Science. 2013;3(1):27160.
[15] Ezam M, Bidokhti AA, Javid AH. Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea. Ocean Science. 2010 Oct 11;6(4):887-900.
[16] Bidokhti AA, Ezam M. The structure of the Persian Gulf outflow subjected to density variations. Ocean Science. 2009 Jan 12;5(1):1-2.
[17] Yao F, Johns WE. A HYCOM modeling study of the Persian Gulf: 2. Formation and export of Persian Gulf Water. Journal of Geophysical Research: Oceans. 2010 Nov;115(C11).
[18] Pous S, Carton XJ, Lazure P. A process study of the wind-induced circulation in the Persian Gulf. Open Journal of Marine Science. 2013;3(1):27160.
[19] Shchepetkin AF, McWilliams JC. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling. 2005 Jan 1;9(4):347-404.
[20] Eppley RW. Temperature and phytoplankton growth in the sea. Fishery Bulletin. 1972 Jan 1;70(4):1063-85.
[21] Millero FJ. Chemical oceanography. CRC press; 1996 Jun 25.
[22] Parker RA. Dynamic models for ammonium inhibition of nitrate uptake by phytoplankton. Ecological Modelling. 1993 Mar 1;66(1-2):113-20.
[23] Kirk JT. Light and photosynthesis in aquatic ecosystems. Cambridge university press; 1994 Apr 21.
[24] Falkowski PG. Light-shade adaptation in marine phytoplankton. In: Primary productivity in the sea. Springer, Boston, MA;1980. p. 99-119.
[25] Falkowski PG, Dubinsky Z, Wyman K. Growth‐irradiance relationships in phytoplankton 1. Limnology and Oceanography. 1985 Mar;30(2):311-21.
[26] Geider RJ. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist. 1987 May 1:1-34.
[27] Olson RJ, RJ O. Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum.
[28]  قاضی ارم، عظام مجتبی، علی‌اکبری بیدختی عباسعلی، ترابی آزاد مسعود، حسن‌زاده اسماعیل. شبیه‌سازی جبهه ترموهالاینی جریان خروجی خلیج‌فارس در دریای عمان. هیدروفیزیک. 1397؛ 4(11):1-18.
[29] Levitus, Sydney; US DOC/NOAA/NESDIS. NODC Standard Product: World Ocean Atlas 1994 (11 disc set) (NCEI Accession 0098057). National Oceanographic Data Center;2013.
[30] Chelton DB, DeSzoeke RA, Schlax MG, El Naggar K, Siwertz N. Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography. 1998 Mar;28(3):433-60.
 [31] Mellor GL, Yamada T. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics. 1982 Nov;20(4):851-75.
 [32] Powell TM, Lewis CV, Curchitser EN, Haidvogel DB, Hermann AJ, Dobbins EL. Results from a three‐dimensional, nested biological‐physical model of the California Current System and comparisons with statistics from satellite imagery. Journal of Geophysical Research: Oceans. 2006 Jul;111(C7).
[33] Jiang R, Wang YS. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea. Oceanologia. 2018 Jan 1;60(1):32-51.
 [34] Piontkovski SA, Claereboudt MR. Interannual changes of the Arabian Sea productivity. Marine Biology Research. 2012 Feb 1;8(2):189-94.
[35] Al-Azri AR, Al-Hashmi KA, Al-Habsi H, Al-Azri N, Al-Khusaibi S. Abundance of harmful algal blooms in the coastal waters of Oman: 2006–2011. Aquatic Ecosystem Health & Management. 2015 Jul 3;18(3):269-81.
[36] Das B, Mishra AK. Effect of dust storm on phytoplankton productivity in Arabian Sea. Journal of Remote Sensing & GIS. 2013 Nov 29;4(3):33-44.
[37] Anwar M, Gharib I, Al-Hashash M, ZAGHLOUL N. Surface modelling of dust fallout on the ROPME Sea Area. Annual research report-Kuwait Institute for Scientific Research. 1986:121-4.