بررسی تاثیر ساختار مولکولی الاستومرهای پلی یورتان گرمانرم بر خواص آکوستیک و اتلاف صوت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه متالورژی، دانشکده مهندسی، دانشگاه شیراز، شیراز، ایران

چکیده

الاستومرهای ترموپلاستیک پلی یورتان(TPUE) با مواد اولیه PTMG، HDI و BD در نسبت‌های مولی مختلف 1-2/4-3، 1-2/1-1 و 3-4/2-1 سنتز شدند. تاثیر نسبت استوکیومتری این مواد بر خواص جذب صوت و اتلاف آنها بررسی شد. جهت بررسی ساختار و خواص مواد سنتز شده، از طبف سنجی تبدیل فوریه مادون قرمز (FTIR)، گرماسنجی روبشی تفاضلی (DSC)، تفرق اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، وزن مخصوص و آنالیز مکانیکی دینامیکی (DMTA) استفاده شده است. ساختار شیمیایی TPUE با FTIR آنالیز شد. نتایج XRD نشان داد در پلیمر جدایش فازی به وجود آمده است. بررسی‌های XRD و DSC نشان داد تغییر درصد فاز سخت از 12 به 33 درصد سبب تغییر ساختار آمورف پلی یورتان به نیمه‌کریستال می‌شود. تغییر در ترکیب شیمیایی، سبب تغییر در ساختار مناطق سخت شده که این سبب تغییر دانسیته می‌شود. این تغییر ساختار همچنین سبب تغییر در مدول ذخیره و مدول اتلاف شده و فاکتور اتلاف را 75 درصد کاهش می‌دهد. علاوه بر این، سرعت و ضریب جذب صوت در دمای محیط و فرکانس یک هرتز 200 درصد تغییر می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the molecular structure of thermoplastic polyurethane elastomer upon acoustic and damping properties

نویسندگان [English]

  • Ali Yazdani
  • Habib Danesh manesh
  • mojtaba zebarjad
Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
چکیده [English]

Thermoplastic polyurethane elastomer (TPUs) were synthesized by poly (oxytetramethylene) glycol (PTMG), hexamethylenediisocyanate (HDI) and 1, 4- Butanediol (BD) at three different molar ratios (1:4.2:3, 1:2.1:1, 3:4.2:1).The effect of stoichiometric balance on the acoustic and damping properties was evaluated. Fourier Transformed Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffractometry (WAXS), Scanning Electron Microscope (SEM), specific gravity, Dynamic Mechanical Thermal Analysis (DMTA) and specific gravity were used to investigate the structures. PUUEs chemical structures were characterized by FTIR. The data on the scattering of the wide-angle X-ray is ascribed to the TPU matrix hard parts phase segregation.The results of DSC and XRD backed up the amorphous and crystalline type of PUEs with 12 and 33 wt % of hard segment (HS), respectively. Changing in molecular structure cases changing in hard segment and specific gravity. This was enhanced in HS, leading to changing in storage modules and damping factor. Damping factor decrease 75% and velocity and acoustic absorption coefficient, in room temperature and 1Hz frequency, changes 200%.

کلیدواژه‌ها [English]

  • Polyurethane
  • mole function
  • damping modulus
  • acoustic velocity
[1] Ramotowski T, Jenne K. NUWC XP-1 polyurethane-urea: a new," acoustically transparent" encapsulant for underwater transducers and hydrophones. In: Oceans 2003. Celebrating the Past... Teaming Toward the Future (IEEE Cat. No. 03CH37492); 2003 Sep 22; San Diego, CA, USA. IEEE;2005.
[2] Warnes LA. Some acoustical properties of certain polyurethane elastomers. Ultrasonics. 1989 Mar 1;27(2):97-100.
[3] Mott PH, Roland CM, Corsaro RD. Acoustic and dynamic mechanical properties of a polyurethane rubber. The Journal of the Acoustical Society of America. 2002 Apr;111(4):1782-90.
[4] Hartmann B. Relation of polymer chemical composition to acoustic damping. In: Abstracts of Papers of the American Chemical Society; 1989 Apr 9. WASHINGTON, DC 20036: Amer Chemical; 1990.
[5] Burke M, Townend DJ. Acoustic and mechanical properties of polyurethanes based on polybutadiene soft segment. Plastics, rubber and composites. 1999 May 1; 28(5):185-90.
[6] Bandera W, Pawlaczyk K. Sound velocity and loss factor of polyurethane composites. Part I. Archives of Acoustics. 2014 May 1;16(3-4):433-9.
 [7] Zhang H, Chen Y, Zhang Y, Sun X, Ye H, Li W. Synthesis and characterization of polyurethane elastomers. Journal of Elastomers & Plastics. 2008 Apr;40(2):161-77.
[8] Barikani M, Barmar M. Thermoplastic polyurethane elastomers: synthesis, and study of effective structural parameters. Iranian polymer journal. 1996 Oct;5:231-5.
[9] Jouibari IS, Haddadi-Asl V, Mirhosseini MM. A novel investigation on micro-phase separation of thermoplastic polyurethanes: simulation, theoretical, and experimental approaches. Iranian Polymer Journal. 2019;28(3):237-50.
[10] Bi D, Zhi W, Yu M, Zhou B, Qin WG. Study on the preparation and properties of polyurethane elastomers. Polymer-Plastics Technology and Engineering. 2010;49(10):996-1000.
[11] Oprea S. The effect of chain extenders structure on properties of new polyurethane elastomers. Polymer bulletin. 2010;65(8):753-66.
[12] Eceiza A, Martin MD, De La Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polymer Engineering & Science. 2008;48(2):297-306.
[13] Fakirov S, editor. Handbook of condensation thermoplastic elastomers. John Wiley & Sons; 2006.
[14] Sánchez–Adsuar MS, Papon E, Villenave JJ. Influence of the synthesis conditions on the properties of thermoplastic polyurethane elastomers. Journal of applied polymer science. 2000;76(10):1590-5.
[15]Zhang L, Wang H, Dai Z, Zhao Z, Fu F, Liu X. The dynamic chain effect on healing performance and thermo-mechanical properties of a polyurethane network. Reactive and Functional Polymers. 2020 Jan 1;146:104444.
[16] Jiang L, Ren Z, Zhao W, Liu W, Liu H, Zhu C. Synthesis and structure/properties characterizations of four polyurethane model hard segments. Royal Society open science. 2018 Jul 25;5(7):180536.
[17] Hepburn C. Polyurethane elastomers. Springer Science & Business Media; 2012.
[18] Shen Z, Zheng L, Li C, Liu G, Xiao Y, Wu S, Liu J, Zhang B. A comparison of non-isocyanate and HDI-based poly (ether urethane): Structure and properties. Polymer. 2019;175:186-94.
[19] Thompson CM, Heimer WL. Relationship between acoustic properties and structure of polyurethanes. The Journal of the Acoustical Society of America. 1985 Mar;77(3):1229-38.
[20] Tian D, Wang F, Yang Z, Niu X, Wu Q, Sun P. High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals. Carbohydrate polymers. 2019 Sep 1;219:191-200.
[21] Zhang H, Zhang F, Wu Y. Robust stretchable thermoplastic polyurethanes with long soft segments and steric semisymmetric hard segments. Industrial & Engineering Chemistry Research. 2020 Feb 26;59(10):4483-92.
[22] Furukawa M, Mitsui Y, Fukumaru T, Kojio K. Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer. 2005 Nov 21;46(24):10817-22.
[23] Pilch Pitera B, Król P, Pikus S. Supramolecular structure of cross linked polyurethane elastomers based on well‐defined prepolymers. Journal of applied polymer science. 2008 Dec 5;110(5):3292-9.
[24] Somdee P, Lassú-Kuknyó T, Konya C, Szabó T, Marossy K. Thermal analysis of polyurethane elastomers matrix with different chain extender contents for thermal conductive application. Journal of Thermal Analysis and Calorimetry. 2019 Oct;138(2):1003-10.
[25] Korley LT, Pate BD, Thomas EL, Hammond PT. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer. 2006 Apr 19;47(9):3073-82.
[26] Seymour RW, Cooper SL. Thermal analysis of polyurethane block polymers. Macromolecules. 1973 Jan;6(1):48-53.
[27] Hood MA, Wang B, Sands JM, La Scala JJ, Beyer FL, Li CY. Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer. 2010 May 4;51(10):2191-8.
[28] Kevin PM. Dynamic mechanical analysis, a Practical Introduction. CRC Press; 1999.
[29] Rodger C. Elastomeric Materials for Acoustic Application. Naval Sea Systems Command & ONR;1989.
[30] Mark JE, editor. Physical properties of polymers handbook. New York: Springer; 2007 Mar 21.
[31] Benjamin S. Hydrophone for Acoustic Detection at South Pole. IceCube collaboration;2008.
[32] Lee J, Kim GH, Ha CS. Sound absorption properties of polyurethane/nano‐silica nanocomposite foams. Journal of applied polymer science. 2012 Feb 15;123(4):2384-90.
[33] Vasina M, Monkova K, Monka PP, Kozak D, Tkac J. Study of the sound absorption properties of 3D-printed open-porous ABS material structures. Polymers. 2020 May;12(5):1062.
[34] Jiang X, Wang Z, Yang Z, Zhang F, You F, Yao C. Structural design and sound absorption properties of nitrile butadiene rubber-polyurethane foam composites with stratified structure. Polymers. 2018 Sep;10(9):946.
[35] Cook RL, Kendrick D. Speed of sound of six PRC Polyurethane materials as a function of temperature. The Journal of the Acoustical Society of America. 1981 Aug;70(2):639-40.