تأثیر فشار هیدرواستاتیک برمینیمم نویز ترانزیستورهای AlGaN/GaN با تحرک بالای الکترونی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، واحد خوی، دانشگاه آزاد اسلامی، خوی

چکیده

در این مقاله، مدل عددی برای محاسبه چگالی و جریان الکترونی چاه کوانتم ترانزیستورهای AlGaN/GaN با در نظر گرفتن فشارهیدرواستاتیکی ارائه شده است که امکان بررسی اثر فشار روی رسانندگی متقابل، ساب باند‌های چاه کوانتمی، جریانهای نشت سطحی و حجمی و نهایتاً مینیمم نویز را فراهم می‌کند. دراین مدل از حل خودسازگار معادله شرودینگر و پواسون در بدست آوردن چگالی گاز الکترونی دو بعدی استفاده شده که در آن تا پنج ساب باند انرژی در نظر گرفته شده است. افزایش فشارمعادل گیت مجازی در ترانزیستورها در مجاورت گیت حقیقی عمل میکند که باعث افزایش عمق چاه کوانتم، جریان و چگالی الکترونی، رسانندگی متقابل، جریانهای نشت ونهایتاً مینیمم نویز میگردد. با افزایش فشار ساب باندها چاه کوانتم دو بعدی به سمت پایین فشرده می‌شود و الکترون‌ها بستگی قوی پیدا می‌کنند و محدودیت کوانتمی افزایش می‌یابد . همچنین در هر فرکانس و جریان درین سورس دلخواهی افزایش فشار باعث افزایش مینیمم نویز می‌شود. نتایج محاسبه شده با داده‌های تجربی موجود مطابقت خوبی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Hydrostatic Pressure on Minimum nose of AlGaN/GaN high electron mobility transistors

نویسندگان [English]

  • Rajab Yahyazadeh
  • Zahra Hashempoor
Department of Physics, Khoy branch, Islamic Azad University, Khoy, Iran
چکیده [English]

In this paper, a numerical model for calculating the density and electron current of quantum wells of AlGaN / GaN transistors is presented by considering hydrostatic pressure, which enables the effect of pressure on mutual conductivity, quantum well subbands, surface and volume leakage currents and finally check for minimum noise. In this model, a self-consistent solution of Schrodinger and Poisson equation is used to obtain a two-dimensional electron gas density in which up to five energy subbands are considered. An increase in hydrostatic pressure is equivalent to creating a virtual gate adjacent to a real gate., which increases the quantum well depth, current and electron density, cross-conduction, leakage currents, and finally the minimum noise. As the pressure increases, the quantum well subbandes are compressed downward, and the electron-dependent energy increases and the quantum confinement increases. Also, at any desired frequency and drain-source current, increasing the pressure increases the minimum noise. The calculated results are in good agreement with the available experimental data.

کلیدواژه‌ها [English]

  • Hydrostatic pressure
  • Minimum Noise
  • Gate Leakage
  • Quantum Well
[1]Latorre-Rey AD, Sabatti FF, Albrecht JD, Saraniti M. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors. Applied Physics Letters. 2017 Jul 3;111(1):013506.
[2]Ma J, Matioli E. Slanted tri-gates for high-voltage GaN power devices. IEEE Electron Device Letters. 2017 Jul 25;38(9):1305-8.
[3]Tang G, Kwan AM, Wong RK, Lei J, Su RY, Yao FW, et al. Digital integrated circuits on an E-mode GaN power HEMT platform. IEEE Electron Device Letters. 2017 Jul 11;38(9):1282-5.
[4]Sanabria C, Chakraborty A, Xu H, Rodwell MJ, Mishra UK, York RA. The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs. IEEE electron device letters. 2005 Dec 19;27(1):19-21.
[5]Gongwei Hu, Ligie I, Yan Z. Tow dimensional electron gas in piezotronic devices. Nano Energy. 2019; 59: 667-673.
[6]Bhattacharya M.et al. Influence of gate leakage current induced shot noise on the Minimum Noise Figure of InAlAs/InGaAs double-gate HEMT. Superlattice and Microwave. 2017; 6036(16): 31613-5.
[7]Azam F, Tanneeru A, Lee B, Misra V. Engineering a unified dielectric solution for AlGaN/GaN MOS-HFET gate and access regions. IEEE Transactions on Electron Devices. 2020 Feb 21;67(3):881-7.
[8]Kim HS, Kang MJ, Kim JJ, Seo KS, Cha HY. Effects of Recessed-Gate Structure on AlGaN/GaN-on-SiC MIS-HEMTs with Thin AlOxNy MIS Gate. Materials. 2020 Jan;13(7):1538.
[9]Jogai B. Free electron distribution in AlGaN/GaN heterojunction field-effect transistors. Journal of applied physics. 2002 Mar 15;91(6):3721-9.
[10]Yahyazadeh R. Numerical Modeling of Electronic and Electrical Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells. Journal of Photonics for Energy. 2020; 10(4): 045504.
[11]Yahyazadeh R, Hashempour Z. Numerical Modeling of the Electronic and Electrical Characteristics of AlGaN/GaN Multiple Quantum Well Solar Cells. Journal of Optoelectronical Nanostructures. 2020; 5(3): 81-102.
[12]Vurgaftman I, Meyer JÁ, Ram-Mohan LÁ. Band parameters for III–V compound semiconductors and their alloys. Journal of applied physics. 2001 Jun 1;89(11):5815-75.
[13]Christensen NE, Gorczyca I. Optical and structural properties of III-V nitrides under pressure. Physical Review B. 1994 Aug 15;50(7):4397.
[14]Ambacher O, Foutz A. B, Smart J et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics. 2000; 87: 334.
[15]Ambacher O, Majewski J, Miskys C, et al. Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures. J. Phys. Condens. Matter: 2002; 14: 3399.
[16]Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, et al. Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures. Journal of physics: condensed matter. 2002 Mar 22;14(13):3399.
[17]Jin-Feng Z, Jin-Cheng Z, Yue H. Temperature dependence of Hall electron density of GaN-based heterostructures. Chinese Physics. 2004 Aug 1;13(8):1334.
[18]Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Applied physics letters. 2002 Feb 18;80(7):1204-6.
[19]Perlin P, Mattos L, Shapiro NA, Kruger J, Wong WS, Sands T,et al. Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate. Journal of Applied Physics. 1999 Feb 15;85(4):2385-9.
[20]Elibol K, Atmaca G, Tasli P. Lisesivdin S B. A numerical study on subband of InxAl1-xN/InN-based HEMT structure with low-indum barrier layer. Solid state communication. 2013;162:8-12.
[21]Bala KJ, Peter AJ, Lee CW. Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring. Chemical Physics. 2017;495: 42.
[22]Yang M, Lin Z, Zhao J, Cui P, Fu C, Lv Y, et al. Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs. IEEE Transactions on Electron Devices. 2016 Mar 3;63(4):1471-7.
[23]Hashempour Z, Asgari A, Nikipar S, Abolhasani M, Kalafi M. Numerical performance evaluation of AlGaN/GaN high electron mobility transistors including gate length effects. Physica E: Low-dimensional Systems and Nanostructures. 2009 Aug 1;41(8):1517-21.
[24]Chang Y, Zhang Y, Zhang Y. Thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect. Journal of Applied Physics. 2006;99: 044501.
[25]Goswami A, Trew RJ, Bilbro GL. Modeling of the gate leakage current in AlGaN/GaN HFETs. IEEE Transactions on Electron Devices. 2014 Feb 7;61(4):1014-21.
[26]Turuvekere S, Karumuri N, Rahman AA, Bhattacharya A, DasGupta A, DasGupta N. Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: comparison and modeling. IEEE Transactions on electron devices. 2013 Jul 24;60(10):3157-65.
[27]Mojaver HR, Valizadeh P. Reverse gate-current of AlGaN/GaN HFETs: Evidence of leakage at mesa sidewalls. IEEE Transactions on Electron Devices. 2016 Feb 19;63(4):1444-9.
[28]Yahyazadeh R, Hashempour Z. Effects of hydrostatic pressure and temperature on the AlGaN/GaN high electron mobility transistors. Journal of Interfaces, Thin films, and Low dimensional systems. 2019; 2(2):183-94.
[29]Cui P, Liu H, Lin W, Lin Z, Cheng A, Yang M,et al. Influence of different gate biases and gate lengths on parasitic source access resistance in AlGaN/GaN heterostructure FETs. IEEE Transactions on Electron Devices. 2017 Jan 31;64(3):1038-44.
[30]Wu YF, Keller S, Kozodoy P, Keller BP, Parikh P, Kapolnek D, Denbaars SP, Mishra UK. Bias dependent microwave performance of AlGaN/GaN MODFET's up to 100 V. IEEE Electron Device Letters. 1997 Jun;18(6):290-2.
[31]Brudnyi VN, Kosobutsky A V, Kolin N G. Effect of Pressure and Mechanical Stress on the Electronic Properties of AlN and GaN. Physics of the Solid State. 2011;53(4):679–88.
[32]Dridi Z, Bouhafs B, Ruterana P. Pressure dependence of energy band gaps for AlxGa1 - xN, InxGa1 - xN and InxAl1 - x New Journal of Physics. 2002; 4:11.