بررسی عددی پارامترهای موثر بر دقت تخمین نیروی درگ به روش کاهش مومنتوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 دانشگاه یزد

چکیده

تخمین نیروی درگ وارد بر اجسام مختلف همواره موردتوجه محققان بوده است. اصولاً این نیرو از دو روش کلی انتگرال­گیری روی سطح جسم و روش کاهش مومنتوم در ناحیه دنباله جریان محاسبه می­شود. در تحقیق حاضر، محاسبة نیروی درگ در جریان دائم و تراکم­ناپذیر حول بدنه یک زیردریایی نمونه، به روش دوم مورد بررسی قرار گرفته و نتایج با داده­های آزمایشگاهی موجود اعتبار­سنجی شده ­است. شبیه­سازی در نسبت­ منظری­های مختلف در زاویۀ­حمله صفر انجام شده و توانایی این روش در جریان­­های تحت زاویةحمله نیز بررسی شده است. پارامترهای تأثیرگذار بر نتایج این روش، فاصلة نقاط اندازه­گیری از یکدیگر، فاصلة مقطع داده ­برداری از بدنه و اندازة ناحیۀ داده ­برداری، که در این مقاله پیشنهادهای کاربردی در خصوص انتخاب مقدار مناسب برای هر کدام، ارائه شده است. همچنین سهم مؤلفه‌های مختلف فشار، مومنتوم و اغتشاشی در ناحیه دنباله در مقاطع مختلف محاسبه شده است. این نتایج می­تواند در تونل بادهایی با طول مقطع­کاری کوچک به کار گرفته شود. همچنین نتایج این روش را می­توان با نتایج روش متداول انتگرال­گیری سطحی مقایسه کرد. در صورت استفاده از نتایج این تحقیق، حداکثر خطا در زاویة حملة صفر و مخالف صفر به ترتیب کمتر از 4% و 16% خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Investigation of Effective Parameters on Drag Force Estimation Using Momentum Defect Method

نویسندگان [English]

  • Amin Talezade 1
  • Mohammadreza Nazari 2
  • Mojtaba Dehghan Manshadi 1
1 Malek Ashtar university of Technology
2 Yazd university
چکیده [English]

Researchers have recently paid a lot of attention to drag force estimation over different bodies. This force is usually calculated using surface integral over the body and momentum defect method in the wake region. In this research, the steady-state, incompressible drag force calculation around a submarine model is numerically investigated using the latter technique (momentum defect method). Simulations were carried out at different aspect ratios at zero angle of attack and the capabilities of this method at inclined flows were also investigated. The most important parameters which affect the results are the vertex space, the distance of data collection section, and the data collection section size. In this article, practical suggestions are made for each parameter. The contribution of the pressure, momentum, and turbulence term were also evaluated at different cross sections. These findings can be implemented in wind tunnels with small test section length. They can also be used to compare the results with the common CFD surface integral method. By using the results of this research, the maximum error implementing this technique at zero and non-zero angle of attack will be about 4% and 16% respectively.

کلیدواژه‌ها [English]

  • Momentum defect principle
  • Drag force
  • Wake integral technique
  • Numerical simulation
  • DARPA SUBOFF submarine model  
[1] Van Dam CP. Recent experience with different methods of drag prediction. Progress in Aerospace Sciences. 1999 Nov 1;35(8):751-98.
[2] Coles D, Wadcock AJ. Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift. AIAA Journal. 1979 Apr;17(4):321-9.
[3] Antonia RA, Rajagopalan S. Determination of drag of a circular cylinder. AIAA journal. 1990 Oct;28(10):1833-4.
[4] Janus JM, Chatterjee A. Use of a wake-integral method for computational drag analysis. AIAA journal. 1996 Jan;34(1):188-90.
[5] Kusunose K. Drag prediction based on a wake-integral method. 16th AIAA Applied Aerodynamics Conference; 1998; Albuquerque,NM,U.S.A.
[6] Chao DD, Van Dam CP. Airfoil drag prediction and decomposition. Journal of aircraft. 1999 Jul;36(4):675-81.
[7] Kusunose K. Lift analysis based on a wake-integral method. 39th Aerospace Sciences Meeting and Exhibit ;2001 Jan 8-11; Reno,NV,U.S.A.
[8] Spalart PR. On the far wake and induced drag of aircraft. Journal of Fluid Mechanics. 2008 May;603:413-30.
[9] Alam MM, Zhou Y. Alternative drag coefficient in the wake of an isolated bluff body. Physical Review E. 2008 Sep 22;78(3):036320.
[10] O'Neil K. Drag and momentum in a two-dimensional vortex wake. Fluid dynamics research. 2009 Jan 23;41(3):035505.
 [11] Saffman PG, Schatzman JC. An inviscid model for the vortex-street wake. Journal of Fluid Mechanics. 1982 Sep;122:467-86.
[12] Suryanarayana C, Satyanarayana B, Ramji K, Saiju A. Experimental evaluation of pumpjet propulsor for an axi-symmetric body in wind tunnel. International Journal of Naval Architecture and Ocean Engineering. 2010 Mar 1;2(1):24-33.
[13] Gariépy M, Trépanier JY, Masson C. Convergence criterion for a far-field drag prediction and decomposition method. AIAA journal. 2011 Dec;49(12):2814-8.
[14] Gariépy M, Trépanier JY. A new axial velocity defect formulation for a far-field drag decomposition method. Canadian Aeronautics and Space Journal. 2012 Jul 5;58(02):69-82.
[15] Manshadi MD, Esfandeh S, Dehghan AA, Saeidinezhad A. Experimental investigation of the wake of a submarine model by five-hole probe in a wind tunnel. Modares Mechanical Engineering. 2015 Oct 1;15(8).
[16] Toubin H, Bailly D. Development and application of a new unsteady far-field drag decomposition method. AIAA Journal. 2015 Nov;53(11):3414-29.
[17] Toubin H, Bailly D, Costes M. Improved unsteady far-field drag breakdown method and application to complex cases. AIAA Journal. 2016 Jun:1907-21.
[18] Pritchard PJ, Mitchell JW. Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons; 2016 May 23.
[19] Taylor GI. The determination of drag by the pitot traverse method. HM Stationery Office; 1937.
[20] Balaras E. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Computers & Fluids. 2004 Mar 1;33(3):375-404.
[21] Yang J, Stern F. A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions. Journal of Computational Physics. 2012 Jun 1;231(15):5029-61.
[22] Peskin CS. Flow patterns around heart valves: a numerical method. Journal of computational physics. 1972 Oct 1;10(2):252-71.
[23] Davidson L. Fluid mechanics, turbulent flow and turbulence modeling. Sweden: Chalmers University of Technology, Goteborg;2014. Availabe from: http://www.tfd.chalmers.se/~lada/postscript_files/solids-and-fluids_turbulent-flow_turbulence-modelling.pdf
[24] Wilcox DC. Turbulence modeling for CFD. La Canada, CA: DCW industries; 1998 Jan.
[25] Barlow JB, Rae WH, Pope A. Low-speed wind tunnel testing. John wiley & sons; 1999 Feb 22.
[26] Groves NC, Huang TT, Chang MS. Geometric characteristics of DARPA (Defense Advanced Research Projects Agency) SUBOFF models (DTRC model numbers 5470 and 5471). David Taylor Research Center Bethesda MD Ship Hydromechanics Dept; 1989 Mar.
[27] Huang T, Liu HL. Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program. 19th Symposium on Naval Hydrodynamics; 1992; Seoul, South Korea.
[28]  Roddy RF. Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments. David Taylor Research Center Bethesda MD Ship Hydromechanics Dept; 1990 Sep.
[29]  Jones WP, Launder BE. The prediction of laminarization with a two-equation model of turbulence. International journal of heat and mass transfer. 1972 Feb 1;15(2):301-14.
[30]  A. Fluent, 12.0 User’s Guide, Ansys Inc, 2009.