اندازه‌گیری چندمسیری در دریا، شبیه‌سازی و تخمین کانال آکوستیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مخابرات، دانشکده مهندسی فناوری اطلاعات و ارتباطات، دانشگاه جامع امام حسین علیه السلام، تهران، ایران

2 گروه مخابرات، دانشکده مهندسی اطلاعات و ارتباطات، دانشگاه جامع امام حسین علیه السلام، تهران ، ایران

3 دانشگاه شیراز

4 دانشکده علوم مهندسی، پردیس دانشکده های فنی، دانشگاه تهران

چکیده

اهمیت شناخت کانال آکوستیک زیرآب و اثرات آن روی سیگنال‌های آکوستیکی، با توجه به کاربردهای فراوان آن در زمینه‌های مختلف مانند پایش محیط، اکتشاف در اقیانوس‌ها و عملیات نظامی، روزبه‌روز در حال افزایش است. در مقالة حاضر به شبیه‌سازی اثر چند مسیری در محیط زیر آب، بر اساس مدل‌سازی‌ها پرداخته و با حل معادله‌های سیگنال دریافتی در یک آرایه چندسنسوری، نتایج حاصله در خصوص تابع توزیع چگالی احتمال، کشیدگی، چولگی، کپستروم، تابع پراکندگی، تأخیر پخش‌شدگی کانال و میزان انعکاس موجود در کانال ارائه شده است. رفتار سیگنال در یک آرایه خطی، نسبت به یک منبع ثابت با مدل‌سازی سیگنال دریافتی بررسی و تحلیل شده است. همچنین اندازه‌گیری‌های میدانی در خصوص بررسی پدیدۀ چند مسیری در دریا صورت پذیرفته و سناریوی اندازه‌گیری، تحلیل سیگنال و نتایج در خصوص پاسخ ضربه و رفتار آماری سیگنال در آزمون میدانی ارائه شده است. نتایج حاصل از تحلیل داده‌های واقعی، تطابق مناسبی با توزیع ناکاگامی برای اندازه سیگنال آکوستیکی عبوری از دریا نشان داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Multipath Measurement in the Sea, Simulation and Estimation of Underwater Acoustic channel

نویسندگان [English]

  • Abbas Asadzade 1
  • Seyed mohammad Alavi 2
  • Mahmood Karimi 3
  • Hadi Amiri 4
1 Department of Information and Communication Technology,IHCU,Tehran, Iran
2 Department of Information and Communication Technology,IHCU,Tehran, Iran
3 Shiraz University
4 School of Engineering Science, College of Engineering, University of Tehran
چکیده [English]

The importance of identifying underwater acoustic channels and their effects on signals is increasing due to its widespread use in various fields such as environmental monitoring, explorations in oceans and military operations. In this paper, we simulate the multi-path effect in underwater environment based on near-real-world models and by analyzing the received signal equations in a multi-sensor array. The results are expressed in terms of probability density, kurtosis, skewness, cepstrum and reflection volume in the channel. Based on received signal modeling, the signal behavior in a linear array is investigated and analyzed in a few depths relative to a fixed source. Moreover, to investigate the multi-path phenomenon, actual measurements were made in the sea and measurement scenario, signal analysis, results of the impulse response and its statistical behavior are presented. The results of real data analysis show that the magnitude of the acoustic signal transmitted by sea has a Nakagami distribution.
 

کلیدواژه‌ها [English]

  • Acoustic wave propagation
  • Acoustic signal processing
  • Multi-path
  • Receiver array
  • Chirp signal
[1]   Kilfoyle DB, Baggeroer AB. The state of the art in underwater acoustic telemetry. IEEE Journal of oceanic engineering. 2000;25(1):4-27.
[2]   Al_Aboosi YY, Sha'ameri AZ. Experimental Multipath Delay Profile of Underwater Acoustic Communication Channel inShallow Water. Indonesian Journal of Electrical Engineering and Computer Science. 2016;2(2):351-8.
[3]   Xavier JDM. Modulation analysis for an underwater communication channel [dissertation]. Faculty of Engineering: Univ.PORTO; 2012.
[4]   Qarabaqi P, Stojanovic M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. IEEE Journal of Oceanic Engineering. 2013;38(4):701-17.
[5]   Ainslie MA. Principles of sonar performance modelling: Springer; 2010.
[6]   Wenz GM. Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America. 1962;34(12):1936-56.
[7]   Radosevic A, Proakis JG, Stojanovic M, editors. Statistical characterization and capacity of shallow water acoustic channels. OCEANS 2009-EUROPE; 2009.
[8]   Kaddouri S, Beaujean P-PJ, Bouvet P-J. High-Frequency Acoustic Estimation of Time-Varying Underwater Sparse Channels Using Multiple Sources and Receivers Operated Simultaneously. IEEE Access. 2018;6:10569-80.
[9]   Berger CR, Zhou S, Preisig JC, Willett P.Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Transactions on Signal Processing. 2010;58(3):1708-21.
[10]   Radosevic A, Fertonani D, Duman TM, Proakis JG, Stojanovic M, editors. Capacity of MIMO systems in shallow water acoustic channels. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers; 2010.
[11]   Bouvet PJ, Loussert A, editors. Capacity analysis of underwater acoustic MIMO communications. OCEANS'10 IEEE;2010; Sydney.
[12]   Proakis JG, Salehi M. Digital communications. McGraw-Hill; 2008.
[13]   Siderius M, Porter MB, Hursky P, McDonald V, Group K. Effects of ocean thermocline variability on noncoherent underwater acoustic communications. The Journal of the Acoustical Society of America. 2007;121(4):1895-908.
[14]   Chitre M. A high-frequency warm shallow water acoustic communications channel model and measurements. The Journalof the Acoustical Society of America. 2007;122(5):2580-6.
[15]   van Walree PA, Otnes R. Ultrawideband underwater acoustic communication channels. IEEE Journal of Oceanic Engineering. 2013;38(4):678-88.
[16]   Borowski B, editor Characterization of a very shallow water acoustic communication channel. Proceedings of MTS/IEEE oceans; 2009.
[17]   Zhang J, Cross J, Zheng YR, editors. Statistical channel modeling of wireless shallow water acoustic communications from experiment data. MILITARY COMMUNICATIONS CONFERENCE2010; 2010.
[18]   Mahender K, Kumar TA, Ramesh K, editors. Analysis of multipath channel fading techniques in wireless communication systems. AIP Conference Proceedings; 2018.
[19]   Zhao A, Ma L, Hui J, Zeng C, Bi X. Open-Lake Experimental Investigation of Azimuth Angle Estimation Using a Single Acoustic Vector Sensor. Journal of Sensors. 2018.
[20]   Das A, Zachariah D, Stoica P. Comparison of two hyperparameter-free sparse signal processing methods for direction-of-arrival tracking in the HF97 ocean acoustic experiment. IEEE Journal of Oceanic Engineering. 2018;43(3):725-34.
[21]   Yuen N, Friedlander B. DOA estimation in multipath: an approach using fourth-order cumulants. IEEE Transactions on Signal Processing. 1997;45(5):1253-63.
[22]   Kronauge M, Rohling H. New chirp sequence radar waveform. IEEE Transactions on Aerospace and Electronic Systems. 2014;50(4):2870-7.
[23]   Borowski BS. Application of channel estimation to underwater, acoustic communication [dissertation]. Stevens Instituteof Technology; 2011.
[24]   Pajusco P, Gallée F, Malhouroux N, Burghelea R, editors. Massive antenna array for space-time channel sounding. 11th European Conference on Antennas and Propagation (EUCAP); 2017.
[25]   Catipovic JA. Performance limitations in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering. 1990;15(3):205-16.
[26]   Zielinski A, Yoon Y-H, Wu L. Performance analysis of digital acoustic communication in a shallow water channel. IEEE journal of Oceanic Engineering. 1995;20(4):293-9.
[27]   Kim SM, Byun SH, Kim SG, Lim YK, editors. Temporal variations of the statistical properties of an underwater acoustic channel measured at a shallow water in 2009. OCEANS'10 IEEE;2010; Sydney.
 
[28]   Cao Y, He H, Man H. SOMKE: Kerneldensity estimation over data streams by sequences of self-organizing maps. IEEE transactions on neural networks and learning systems. 2012;23(8):1254-68.
[29]   Li X, Yu M, Liu Y, Xu X, editors. Feature Extraction of Underwater Signals Based on Bispectrum Estimation. Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th International Conference on; 2011.
[30]   Hinich MJ, Marandino D, Sullivan EJ. Bispectrum of ship‐radiated noise. The Journal of the Acoustical Society of America. 1989;85(4):1512-7.
[31]   Steiglitz K, Dickinson B, editors. Computation of the complex cepstrum by factorization of the z-transform. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'77; 1977.
[32]   Biagetti G, Crippa P, Orcioni S, Turchetti C. Homomorphic deconvolution for MUAP estimation from surface EMG signals. IEEE journal of biomedical and health informatics. 2017;21(2):328-38.
[33]   Ding Z, Nguyen T. Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming. IEEE Transactions on Signal Processing. 2000;48(6):1587-96.
[34]   Press W, Flannery B, Teukolsky S, Vetterling W. Moments of a distribution: Mean, variance, skewness, and so forth. Numerical Recipes. 1992:604-9.
[35]   Rudander J, van Walree PA, Husøy T, Orten P. Very-High-Frequency Single-Input–Multiple-Output Acoustic Communication in Shallow Water. IEEE Journal of Oceanic Engineering. 2018(99):1-13.
[36]   Dessalermos S. Undersea acoustic propagation channel estimation [dissertation]. Monterey, California: Naval Postgraduate School; 2005.
[37]   Collins MD. User’s Guide for RAM Versions 1.0 p. Washington, DC: Naval Research Lab;1995.Report No.:20375.