مدل سازی و بررسی ایزوترم های جذب 2-4-6 تری نیتروفنل از محیط آبی با استفاده از بیوکامپوزیت پوسته خرچنگ Protunus segnis اصلاح شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد بیوتکنولوژی دریا ، دانشگاه آزاد اسلامی واحد تهران شمال

2 دانشیار دانشکده علوم و فنون دریایی دانشگاه آزاد اسلامی واحد تهران شمال

3 استادیار گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و محیط زیست، دانشگاه اراک، اراک

چکیده

6-4-2تری نیتروفنول از آلودگی­ های اصلی موجود در جریان پساب­ های صنایع پتروشیمی، نفت، داروسازی، پلاستیک و همچنین در مقادیر کمتر در فاضلاب شهری و کشاورزی یافت می­ شود. آلودگی اکوسیستم‌های آبی و آب آشامیدنی به این آلاینده باعث سمیت، مشکلات بهداشتی و طعم و بو می‌شود. هدف از این مطالعه حذف 2-4-6تری نیتروفنول از محلول آبی با استفاده از بیوکامپوزیت مغناطیسی پوسته خرچنگ پورتنوس سگنیس اصلاح‌شده است. به‌منظور بهینه­ سازی فرایند جذب2-4-6 تری نیتروفنول از نرم‌افزار دیزاین اکسپرت و روش پاسخ سطحی در طرح مرکب مرکزی استفاده شد. پارامترهای جذب مانند زمان تماس (10 تا 120 دقیقه)، pH (2-7)، غلظت اولیه تری­نیتروفنول (10 تا 60 میلی­ گرم بر لیتر) و میزان غلظت جاذب (10 تا 50 میلی­گرم) مورد بررسی قرار گرفتند. ایزوترم داده­ های تعادلی جذب با استفاده از مدل­ های ایزوترمی لانگمویر، فروندلیچ و تمکین بررسی شد. نتایج نشان داد در شرایط بهینه، کارایی حداکثر حذف2-4-6 تری نیتروفنول، 52 درصد با مقدار بهینه 3/25=pH، میزان غلظت جاذب 40 میلی گرم، غلظت اولیه 2-4-6تری نیتروفنول 22/5 میلی­ گرم بر لیتر و زمان 92/5 دقیقه به ­دست آمد. همچنین مطالعه مدل ایزوترم نشان داد جذب2-4-6 تری نیتروفنول بر روی جاذب از مدل لانگمویر با ضریب همبستگی (%86=R2) پیروی می­ کند و حداکثر ظرفیت جذب بر اساس مدل لانگمویر 59/88 میلی­ گرم بر گرم بوده است. نتایج این مطالعه نشان داد بیوکامپوزیت مغناطیسی پوست خرچنگ پورتنوس سگنیس اصلاح‌شده کارایی خوبی در حذف 2-4-6تری نیتروفنول دارد و درعین‌حال قیمت ارزان و دسترسی آسان سبب می ­شود که این بیوکامپوزیت به­ عنوان بیوجاذب مطلوبی مدنظر قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and investigation of adsorption isotherms of 2,4,6-Trinitrophenol from aqueous medium using modified Portunus segnis crab shell bio-composite

نویسندگان [English]

  • Fazlali Nobakht 1
  • Mozhgan Emtyazgoo 2
  • Ali Kazemi 3
1 Islamic Azad University North Tehran Branch
2 Islamic Azad university North Tehran Branch - Faculty of Marine Science and Technology
3 Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
چکیده [English]

Trinitrophenol is one of the major pollutants present in the effluents of petrochemical, oil, pharmaceutical and plastic industries, as well as in smaller amounts in municipal and agricultural wastewater. The aim of this study is to remove Trinitrophenol from aqueous solution using a modified Portunus segnis crab shell magnetic bio-composite. In order to optimize the adsorption process of Trinitrophenol, Design-Expert software and surface response method are used in the central composite design. The adsorption is evaluated by parameters of adsorbent dosage contact time (10 to 120 mins), pH (2-7), initial concentration of Trinitrophenol (10 to 60 mg / L) and adsorbent dosage (10 to 50mg). The equilibrium adsorption isotherms are analyzed using Langmuir, Freundlich and Tamkin isotherm models. The results show that under optimal conditions, the maximum removal efficiency of Trinitrophenol is attained 52% with an optimum value of pH = 3.25, the amount of adsorbent dosage is 40mg, the initial concentration of Trinitrophenol is 22.5mg per liter and the time is 92.5 minutes. Also, the study of the isotherm model show that the adsorption of Trinitrophenol on the adsorbent follows the Langmuir model with a correlation coefficient of (R2 = 86) and the maximum adsorption capacity based on the Langmuir model is 59.88mg per gr. The results of this study show that the modified Portunus segnis crab skin magnetic bio-composite has a good efficiency in removing Trinitrophenol, and at the same time its cheap price and easy access make this bio-composite to be considered a desirable biosorbent.
 

کلیدواژه‌ها [English]

  • "Isotherm"
  • " bio-composite"
  • " Portunus segnis crab"
  • "Trinitrophenol."
  1. Umpierres CS, Thue PS, Lima EC, Reis GSd, de Brum IA, Alencar WSd, et al. Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions. Environmental Technology. 2018;39(9):1173-87.
  2. Ramteke LP, Gogate PR. Removal of ethylbenzene and p-nitrophenol using combined approach of advanced oxidation with biological oxidation based on the use of novel modified prepared activated Process Safety and Environmental Protection. 2015;95:146-58.
  3. Chaara D, Pavlovic I, Bruna F, Ulibarri M, Draoui K, Barriga C. Removal of nitrophenol pesticides from aqueous solutions by layered double hydroxides and their calcined products. Applied Clay Science. 2010;50(3):292-98.
  4. US Department of Health & Human Services: Public Health Service PHS: Agency for Toxic Substances and Disease Registry ATSDR. Toxicological profile for dinitrophenols. 1995.
  5. Yang CW, Chen WZ, Chang BV. Biodegradation of tetrabromobisphenol-A in sludge with spent mushroom compost. International Biodeterioration & Biodegradation. 2017 Apr 1;119:387-95.
  6. Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK. Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2, 4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environmental Science & Technology. 2010;44(3):1069-77.
  7. Wang H, Wang HL, Jiang WF, Li ZQ. Photocatalytic degradation of 2, 4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water research. 2009 Jan 1;43(1):204-10.
  8. Lay S, Ni X, Yu H, Shen S. State‐of‐the‐art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review. Journal of Separation Science. 2016;39(12):2321-31.
  9. Nadavala SK, Swayampakula K, Boddu VM, Abburi K. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials. 2009;162(1):482-89.
  10. Wu G-Q, Zhang X, Hui H, Yan J, Zhang Q-S, Wan J-L, et al. Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. Chem Eng J 2012;185:201-10.
  11. Tang B, Lin Y, Yu P, Luo Y. Study of aniline/ɛ-caprolactam mixture adsorption from aqueous solution onto granular activated carbon: kinetics and equilibrium. Chemical engineering journal. 2012 Apr 1;187:69-78.
  12. Leili M, Moussavi G, Naddafi K. Degradation and mineralization of furfural in aqueous solutions using heterogeneous catalytic ozonation. Desalin Water Treat 2013; 51(34-36):6789-97.
  13. Dhir B, Kumar R. Adsorption of heavy metals by Salvinia biomass and agricultural residues. International Journal of Environmental Research. 2010;4(3):427-32.
  14. Gupta V, Carrott P, Ribeiro Carrott M, Suhas. Lowcost adsorbents: growing approach to wastewater treatment—a review. Critical Reviews in Environmental Science and Technology. 2009;39(10):783-842.
  15. Khan NA, Ibrahim S, Subramaniam P. Elimination of heavy metals from wastewater using agricultural wastes as adsorbents. Malaysian Journal of Science. 2004;23(1):43-51.
  16. Rao K, Mohapatra M, Anand S, Venkateswarlu P. Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology. 2010;2(7):81-103.
  17. Kazemi A, Bahramifar N, Heydari A, Olsen SI. Synthesis and sustainable assessment of thiol-functionalization of magnetic graphene oxide and superparamagnetic Fe3O4@ SiO2 for Hg (II) removal from aqueous solution and petrochemical wastewater. Journal of the Taiwan Institute of Chemical Engineers. 2019 Feb 1;95:78-93.
  18. Ramnani SP, Sabharwal S. Adsorption behavior of Cr (VI) onto radiation crosslinked chitosan and its possible application for the treatment of wastewater containing Cr (VI). Reactive and Functional Polymers. 2006 Sep 1;66(9):902-9.
  19. Ghaedi M, Sadeghian B, Pebdani AA, Sahraei R, Daneshfar A, Duran C. Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removals by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 2012; 187(0):133-41.
  20. Akhbari A, Zinatizadeh AA, Mohammadi P, Irandoust M, Mansouri Y. Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology. Chemical Engineering Journal. 2011 Mar 15;168(1):269-79.
  21. Aghel SA, Bahramifar NA, Younesi HA. Optimizing the removal of Reactive Yellow 147 using magnetic photocatalyst Fe3O4@ SiO2@ TiO2 by response surface methodology in central composite design. Journal of Mazandaran University of Medical Sciences. 2017;27(149).
  22. Uddin M, Islam M, Abedin M. Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN Journal of Engineering and Applied Sciences. 2007;2(2):11-17.
  23. Talib NAA, Salam F, Yusof NA, Ahmad SAA, Sulaiman Modeling and optimization of electrode modified with poly (3, 4-ethylenedioxythiophene)/ graphene oxide composite by response surface methodology/ Box-Behnken design approach. Journal of Electroanalytical Chemistry. 2017; 787:1-10.
  24. Hashemi F, Godini H, Shams Khorramabadi G, Mansouri L. Assessing performance of walnut green hull adsorbent in removal of phenol from aqueous Iranian Journal of Health and Environment. 2014;7(2):265-76 (in Persian).
  25. Rahimzadeh Barzoki H, Rahmani A, Dadban Shahamat Y, Beirami S. Adsorption of 2, 4 dinitrophenol from Aqueous Solutions Using Ordered Mesoporous Carbon CMK-3. Journal of Mazandaran University of Medical Sciences. 2016;26(135):119-29 (in Persian).
  26. Kermani M, Pourmoghaddas H, Bina B, Khazaei Z. Removal of phenol from aqueous solutions by rice husk ash and activated carbon. Pakistan Journal of Biological Sciences. 2006;9(10):1905-10.
  27. Sarı A, Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. Journal of Hazardous Materials. 2009;171(1-3):973-79.
  28. Varghese S, Vinod V, Anirudhan T. Kinetic and equilibrium characterization of phenols adsorption onto a novel activated carbon in water treatment. Indian Journal of Chemical Technology. 2004;11: 825-33.
  29. Kurniawan A, Sutiono H, Indraswati N, Ismadji Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: revisited of extended langmuir model. Chem Eng J 2012;189–190(0):264-74.
  30. Kurniawan A, Sutiono H, Indraswati N, Ismadji Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: revisited of extended Langmuir model. Chem Eng J 2012;189–190(0):264-74.