مطالعه تجربی ساخت سطوح دندانه‌دار کاهنده نیروی پسا با استفاده از روش پردازش نور دیجیتال (DLP)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

طبیعت زنده یک منبع اصلی برای ارائه طرح‌های خلاقانه جهت حل مشکلات فنی است. پوست بدن کوسه‌های سریع به دلیل وجود ساختارهای دندانه‌ای با نیروی پسای پایین، منبعی برای الهام از طبیعت برای بسیاری از کاربردهای مهندسی است. هدف اصلی در این پژوهش بررسی توانایی روش‌های ساخت افزایشی و بکارگیری تکنیک پرینت سه‌بعدی در ساخت سطوح دندانه‌دار کاهنده نیروی پسا است. در این مطالعه سطوح دندانه‌دار الگو گرفته شده از پوست کوسه‌های سریع طراحی شده و با استفاده از روش پرینت سه‌بعدی پردازش نور دیجیتال (DLP) در ابعاد میکرون از رزین زرد رنگ ساخته شده است. سپس یک کانال بسته از جنس پلکسی گلاس که سطح پایینی آن شامل سطح دندانه‌داراست، جهت ارزیابی قابلیت این سطوح در کاهش افت فشار طراحی و ساخته شده است. یک سامانه مهندسی شامل، پمپ، روتامتر، مخزن آب، اتصالات، مبدل فشاری، منبع تغذیه و نمایشگر برای اندازه‌گیری میزان افت فشار درون کانال از سطوح مختلف ساخته شده است. تست‌ها برای رینولدزهای مختلف برای سطوح دندانه‌دار گوناگون ساخته شده انجام و نتایج مربوط به مقادیر افت فشار با داده‌های تجربی نمونه شاهد مقایسه شده است. نتایج بیانگر توانمندی سطوح دندانه‌دار ساخته شده در کاهش افت فشار درون کانال است.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study on the Fabrication of Drag Reducing Riblet Surfaces by Using DLP Technique

نویسندگان [English]

  • mostafa monfared mosghani
  • Mohammad Ali Alidoostan
  • Alireza Binesh
Assistant professor/ Malek Ashtar university of technology
چکیده [English]

Nature and living organisms provide an abundance of creative designs that can be used to solve many technical and engineering problems. Fast swimming shark skin is covered with low drag microstructures which is a good source of inspiration from nature for numerous engineering applications. The main objective of this research is to explore the abilities of additive manufacturing methods and to use 3D printing technology to fabricate drag-reducing riblet surfaces. Thus, the shark skin imitated riblet surfaces have been designed and fabricated in micron scale by using a yellow resin specially-formulated for 3D printers and the DLP technique. Then, a closed channel made of Plexiglas with its bottom surface covered with a riblet surface has been designed and constructed to evaluate the ability of these surfaces in reducing the pressure drop. An engineering system including a pump, rotameter, water tank, connecting tubes, differential pressure transmitter, power supply and monitor has been installed to measure the amount of pressure drop across the channel for various riblet surfaces. The tests have been performed for different Reynolds numbers and various riblet surfaces, and the pressure drop results have been compared with empirical data for a channel with simple sample. The findings indicate the ability of riblet surfaces in reducing the pressure drop across the channel.

کلیدواژه‌ها [English]

  • Drag. Pressure Drop
  • Riblet Surface
  • Additive manufacturing
  • DLP Technique
  • Closed Channel
[1] Collins MW, Brebbia CA, editors. Design and Nature II Comparing Design in Nature with Science and Engineering. UK, Southampton:WIT Press; 2004.
 [2] Bhushan B. Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009 Apr 28;367(1893):1445-86.
[3] Bhushan B, editor. Springer Handbook of Nanotechnology. Third ed. New York: Springer;2010.
[4] Bhushan B. Biomimetics: bioinspired Hierarchical-Structured Surfaces for Green Science and Technology. Germany, Heidelberg: Springer-Verlag; 2012.
[5] Allen R, editor. Bulletproof feathers: how science uses nature's secrets to design cutting-edge technology. University of Chicago Press; 2010.
[6] Armstrong RE, Drapeau MD, Loeb CA, Valdes JJ, editors. Bio-inspired innovation and national security. Washington: National Defense University Press; 2010.
[7] Bar-Cohen Y, Press CR, Pohlmann LD. Biomimetics: Nature-Based Innovation. Florida: CRC Press; 2011.
[8] Blevins RD. Applied fluid dynamics handbook. New York: Van Nostrand-Reinhold; 1984.
[9] Melo L, Bott TR, Bernardo CA, editors. Fouling science and technology. The Netherlands: Kluwer Academic Publishers; 1988.
[10] Lowrey P, Harasha J. A preliminary assessment of the feasibility of using riblets in internal flows to conserve energy. Energy. 1991 Mar 1; 16(3):631-42.
[11] Bechert D, Bruse M, Hage W, Meyer R, Bechert D, Bruse M, Hage W, Meyer R. Biological surfaces and their technological application-laboratory and flight experiments on drag reduction and separation control. 28th Fluid dynamics conference; 1997; New York. American Instite of Aeronatics and Astronautics; 1997.
[12] Fingerman M, Nagabhushanam R, Thompson MF, editors. Recent Advances in Marine Biotechnology. New Hampshire: Science Publishers, Inc; 1999.
[13] Walker JT, Surman S, Jass J, editors. Industrial biofouling: detection, prevention, and control. New York: Wiley; 2000.
[14] Railkin AI. Marine biofouling: colonization processes and defenses. CRC press; 2003 Dec 29.
[15] Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Elsevier; 2009 May 22.
[16] Bhushan B, Jung YC. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science. 2011 Jan 1;56(1):1-08.
[17] Deyuan Z, Yuehao L, Huawei C, Xinggang J. Exploring drag-reducing grooved internal coating for gas pipelines. Pipeline Gas Journal. 2011;238(3):58-60.
[18] Bixler GD, Bhushan B. Biofouling: lessons from nature. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2012 May 28;370(1967):2381-417.
 [19] Bixler GD, Bhushan B. Shark skin inspired low-drag microstructured surfaces in closed channel flow. Journal of colloid and interface science. 2013 Mar 1;393:384-96.
[20] Bechert DW, Hoppe G, Reif WE. Paper presented at: AIAA Shear Flow Control Conference;1985. New York: Boulder, CO; 1986.
[21] Bechert DW, Bruse M, Hage WV, Van der Hoeven JT, Hoppe G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of fluid mechanics. 1997 May;338:59-87.
[22] Walsh M. Turbulent boundary layer drag reduction using riblets. In: AIAA 20th aerospace sciences meeting; 1982 Jan 11.
[23] Walsh M, Lindemann A. Optimization and application of riblets for turbulent drag reduction. In: 22nd aerospace sciences meeting 1984 Jan 1; New York.
[24] Wilkinson SP, Lazos BS. Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays. In: Liepmann HW, Narasimha R, editors. Turbulence Management and Relaminarisation. Berlin; Springer: 1988. p. 121-31.
[25] Rohr JJ, Andersen GW, Reidy LW, Hendricks EW. A comparison of the drag-reducing benefits of riblets in internal and external flows. Experiments in fluids. 1992 Oct;13(6):361-8.
[26] Jung YC, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter. 2009 Dec 21;22(3):035104.
[27] Dean B, Bhushan B. The effect of riblets in rectangular duct flow. Applied Surface Science. 2012 Feb 1;258(8):3936-47.
[28] Jung YC, Bhushan B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter. 2009 Dec 21;22(3):035104.
[29] Bechert DW, Bruse M, Hage WV, Van der Hoeven JT, Hoppe G. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of fluid mechanics. 1997 May;338:59-87.
[30] Bixler GD, Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft matter. 2012;8(44):11271-84.
[31] Endrikat S, Modesti D, MacDonald M, García-Mayoral R, Hutchins N, Chung D. Direct numerical simulations of turbulent flow over various riblet shapes in minimal-span channels. Flow, Turbulence and Combustion. 2021 Jun;107(1):1-29.
 [32] Soleimani S, Eckels S. A review of drag reduction and heat-transfer enhancement by riblet surfaces in closed-and open-channel flow. International Journal of Thermofluids. 2020 Oct 29:100053.
[33] Ao M, Wang M, Zhu F. Investigation of the turbulent drag reduction mechanism of a kind of microstructure on riblet surface. Micromachines. 2021 Jan;12(1):59.