بررسی عددی اثر قطر سوراخ کاویتاتور دیسکی بر نیروی پسا و شکل حباب ابرکاواک

نوع مقاله : مقاله پژوهشی

نویسنده

مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر

چکیده

ابرکاواک یک فرایند هیدرو‌دینامیکی است که در آن جسم کاملاً در یک لایة گاز احاطه شده و تشکیل آن ناشی از کاویتاتور نصب شده در جلوی جسم است. شناورهای ابرکاواکی می‌توانند با سرعت‌های بالایی در آب حرکت کرده و مقاومت اصطکاکی به میزان قابل توجهی کاهش یابد. در سال­ های اخیر محققان، هندسه­ های مختلفی از کاویتاتورها در تحقیقات تئوری، عددی و تجربی موردبررسی و تجزیه‌وتحلیل قرار داده‌اند. یکی از مهم‌ترین کاویتاتورهای مورداستفاده در کاربردهای عملی، کاویتاتورهای دیسکی سوراخ‌دار است که در این مقاله مورد تحلیل قرار گرفته است. حساسیت سنجی پارامترهای هندسی و جریانی و تأثیر آن‌ها بر هندسه کاویتی (حباب) و میزان انتقال جرم مهم‌ترین متغیرهایی هستند که در مطالعه حاضر مورد بحث و بررسی قرار گرفته­ است. تحلیل عددی با استفاده از روش دینامیک سیالات محاسباتی بر پایه حجم محدود به‌کمک نرم‌افزار انسیس-فلوئنت انجام شده است. برای مدل‌سازی جریان سیال اغتشاشی از مدل k-ε استفاده شده است. شبکه تولیدشده حول کاویتاتور و در همه دامنه حل شبکه سازمان یافته است. برای اعتبارسنجی نتایج عددی از دو نمونه هندسه شامل سطح مستطیلی با زاویه حمله 10 درجه و کاویتاتور دیسکی استفاده شده است. مطابق نتایج به‌دست‌آمده انطباق خوبی بین داده­ های عددی و تجربی وجود دارد. بر اساس نتایج به‌دست‌آمده برای سرعت‌های بالاتر از 60 متر بر ثانیه با استفاده از ضرایب ثابت اصلاحی می­ توان میزان مقاومت مربوط به حباب ابرکاواک را با دقت مناسبی تخمین زد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Investigation of the Effect of Disk-Shaped Cavitator Hole Diameter on Drag Force and Cavity Shape

نویسنده [English]

  • Ehsan Yari
Faculty of Mechanics .Maleke Ashtar University of Technology
چکیده [English]

Supercavitating a hydrodynamic process in which the body is completely surrounded by a layer of gas and its formation is the result of cavitators installed in front of the body. Supercavitating vehicles can move in water bodies with high speeds and thus significantly reduce frictional resistance. One of the most cavitators used in practical applications is perforated disk-shaped cavitator, which is analyzed in this article. Sensitivity of geometrical and flow parameters and their impact on the geometry of the cavity (bubble) and the rate of mass transfer, are the most important variables which have been discussed in this study. Numerical analysis has been performed using computational fluid dynamic based on finite volume method with the help of Ansys-Fluent software. The k-ε model is used to model the turbulent fluid flow. The generated network is structured around the cavitator and across the entire network solution domain. To validate the numerical results, two geometries including a rectangular surface with attack angle of 10 degrees and disk cavitator have been used. According to the obtained results, there is good agreement between numerical and experimental data. Based on the obtained results for speeds higher than 60 meters per second, using constant correction factors, the resistance level of the super-cavitation bubble can be accurately estimated.
 

کلیدواژه‌ها [English]

  • Super-cavitation
  • perforated disk-shaped cavitator
  • Finite volume method
  • Mass transfer
  • Drag coefficient
[1]    Young F. Ronald. Cavitation. London: Imperial College Press; 1999.
[2]    Arakeri VH, Acosta AJ. Viscous effects in inception of cavitation on axisymmetric bodies. Journal of Fluids Engineering. 1973 Dec; 519-26.
[3]    Guo JH, Lu CJ, Chen Y. Characteristics of flow field around an underwater projectile with natural and ventilated cavitation. Journal of Shanghai Jiaotong University (Science). 2011; 16(2):236-41.
[4]    Jiang Z, Xiang M, Lin M, Zhang W, Zhang S. Research on hydrodynamic properties of annular cavitator with water injection. Polish Maritime Research. 2012; 19(4): 11-15.
[5]    Shang Z. Numerical investigations of super cavitation around blunt bodies of submarine shape. Applied Mathematical Modelling. 2013;37(20): 8836-45.
[6]    Konstantinov SY, Tselischev DV, Tselischev VA. Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS سی اف ایکس . Modern Applied Science. 2014; 9(4):21-35.
[7]    Ghaffari M, Pasandideh-Fard M, Tabaki M. Simulation of flow around axisymmetric projectiles with circular cavitator and ringed tip using control volume and boundary element methods. Modares Mechanical Engineering. 2016; 16(12): 67-78.
[8]    Yang D, Xiong YL, Guo XF. Drag reduction of a rapid vehicle in super-cavitating flow. International Journal of Naval Architecture and Ocean Engineering. 2017 Jan; 9(1): 35-44.
[9]    Kadivar E, Javadi Kh, Javadpour SM. The investigation of natural super-cavitation flow behind three-dimensional cavitators: full cavitation model. Applied Mathematical Modelling.2017;45:165-78.
[10]  عرفانیان محمدرضا، مقیمان محمد. مطالعه عددی تأثیر ضریب نرخ دمش گاز بر مشخصات کاویتی در جریان سوپرکاویتاسیون گازدهی شده. مجله مهندسی مکانیک مدرس. 1397؛18(2): 443-450.
[11]   Fan C, Li Z, Khoo BC, Du M. Supercavitation phenomenon research of projectiles passing through density change area. AIP Advances. 2019 Apr 2;9(4):045303.
[12]   Acosta AJ, Furuya O. A Brief Note on Linearized, Unsteady, Supercavitating Flows. Journal of Ship Research. 1979;23(2):85-8.
[13]   Patankar SV. Numerical heat and fluid flow. First ed. New York, CRC Press; 1980.
[14]   Ferziger JH, Peric M. Computational methods for fluid dynamics. 2nd edition. Springer;1999.
[15]   Senocak I, Shyy W. A pressure-based method for turbulent cavitating flow computations. Journal of Computational Physics. 2002 Mar 1;176(2):363-83.
[16]   Singhal AK, Athavale MM, Li H, Jiang Y. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering. 2002 Sep 1;124(3):617-24.
[17]   Yoshikawa H, Tsubura I, Ota T. Unsteady cavitating flow around a slender rectangular. 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics; 2005 April 17-21; Matsushima, Miyagi, Japan.
[18]   Franc JP, Michel JM. Fundamentals of Cavitation. Springer; 2004.