طراحی، شبیه‌سازی و تحلیل عملکرد هیدروفن‌های حساس باند پهن فرکانس پایین با استفاده از ترانزیستورهای گیت معلق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شیراز

2 مجتمع دانشگاهی هوادریا، دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله ساختاری نوین برای  طراحی و ساخت هیدروفن‌های حساس باندپهن فرکانس پایین ارائه شده است. ساختار پیشنهادی از یک ترانزیستور با گیت معلق تشکیل شده‌است. با برخورد امواج آکوستیکی به گیت معلقی که روی یک ترانزیستور اثر میدانی قرار دارد، فاصله بین گیت و کانال ترانزیستور و به‌تبع آن ظرفیت خازنی معادل بین گیت و کانال ترانزیستور تغییر می‌کند که این امر به تغییر در جریان و ولتاژ خروجی ترانزیستور می‌انجامد. در اینجا از تغییر فاصلة بین گیت و کانال ترانزیستورکه به تغییر جریان درین-سورس منجر می‌شود، برای آشکارسازی امواج آکوستیکی استفاده می‌شود. به‌منظوریافتن حساسیت ساختار پیشنهادی، در ابتدا میزان جابه‌جایی بیمِ معلقِ ترانزیستور به روش المان محدود موردبررسی قرار می‌گیرد. حساسیت به‌دست‌آمده برای ساختار پیشنهادی در محدودة فرکانس پایین (فرکانس‌های زیر ده هزار هرتز که پایین‌تر از اولین فرکانس رزونانس است db170-) است که در مقایسه با مبدل‌های سنتی افزایش نسبتاً مناسبی را نشان می‌دهد. بازه فرکانسی به‌دست‌آمده برای این هیدروفن‌ها از فرکانس‌های بسیار پایین تا 5/13 کیلوهرتز بوده و برخلاف مبدل‌های پیزوالکتریک سنتی، این مبدل نیازی به تقویت‌کننده بار در نزدیکی المان پیزوسرامیک ندارد. علاوه براین، ابعاد ساختار پیشنهادی در مقایسه با ساختارهای متداول کوچک‌تر است.

کلیدواژه‌ها


عنوان مقاله [English]

Designe, Simulation and Performance Analysis of High Sensitivity and Wide Bandwitdh Hydrophone by Employing Suspended Gate in Low Frequnces

نویسندگان [English]

  • roozbeh negahdari 1
  • Mohammad Zare Ehteshami 2
  • Hossein shahmirzaee 2
1 maleke ashtar university, shiraz
2 MLK
چکیده [English]

In the present article a novel structure is proposed to design and fabricate a high sensitivity wide bandwidth hydrophone. A MOSFET transistor with suspended gate has been used. Directed incident acoustic waves will cause deflection on suspended gate, which will turn into changes in gate-source capacitance and as a result leads to drain-source current variation. Here, acoustic waves will be detected by analysis of drain-source current obtained from changes in distance of gate and channel. In order to calculate sensitivity of proposed hydrophone, first by using finite element method displacement of gate as a response to acoustic wave is determined, then the current variation is determined in another simulation. Results indicate that sensitivity of -170db in low frequency which are in competition to other traditional works improved considerably. One noticeable point regarding this work is that higher sensitivity did not come at the cost of scarification of bandwidth, which was the case in many other works. Usable frequency of proposed hydrophone is from very low frequency up to 13.5 kHz and in contrast to piezoelectric based hydrophone there is no need for charge amplifier in vicinity of hydrophone. In addition, the dimensions of the proposed structure are smaller than conventional structures.

کلیدواژه‌ها [English]

  • Acoustic
  • Hydrophone
  • Micro-Electro-Mechanical-Systems(MEMS)
  • Sensor
  • Suspended gate
  • MOSFET  
[1] Bai B, Ren Z, Ding J, Xu W, Zhang G, Liu J, Zhang W et al. Cross-supported planar MEMS vector hydrophone for high impact resistance. Sensors and Actuators A: Physical. 2017 Aug 15;263:563-70.
[2] Zhang G, Liu M, Shen N, Wang X, Zhang W. The development of the differential MEMS vector hydrophone. Sensors. 2017;17(6):1332.
[3] Okada N, Takeuchi S. Robust hydrophone with hydrothermal PZT thick-film vibrator and titanium front layer for use in high-power ultrasound fields. 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM);2015;Singapore. IEEE; 2015. p.147-50.‏doi: 10.1109/ISAF.2015.7172691
[4] Chaggares NC, Ivanytskyy O, Pang G, Moszczynski M. Membrane hydrophone for high frequency ultrasound and method of manufacture. Google Patents; 2016 . p.1-3.
[5] Ando Y, Fletcher NH, Schroeder MR. Modern Acoustics and Signal Processing.
[6] Helvajian H. Microengineering aerospace systems. Aiaa; 1999.
[7] Butler JL, Sherman CH. Transducers and arrays for underwater sound. Cham, Switzerland: Springer International Publishing; 2016 Sep 1.
[8] Sung M, Shin K, Moon W. A micro-machined hydrophone employing a piezoelectric body combined on the gate of a field-effect transistor. Sensors and Actuators A: Physical. 2016 Jan 1;237:155-66.
[9] Sung M, Shin K, Moon W. A new transduction mechanism for hydrophones employing piezoelectricity and a field-effect transistor. Sensors and Actuators A: Physical. 2015 Sep 1;233:557-68.
[10] Arshad MR. Recent advancement in sensor technology for underwater applications.
[11] Xue C, Chen S, Zhang W, Zhang B, Zhang G, Qiao H. Design, fabrication, and preliminary characterization of a novel MEMS bionic vector hydrophone. Microelectronics Journal. 2007 Oct 1;38(10-11):1021-6.
[12] Qiu Y, Gigliotti JV, Wallace M, Griggio F, Demore CE, Cochran S, Trolier-McKinstry S. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors. 2015 Apr;15(4):8020-41.
[13] Ganji BA, Nateri MS, Dardel M. Design and modeling of a novel high sensitive MEMS piezoelectric vector hydrophone. Microsystem Technologies. 2018 Apr 1;24(4):2085-95.
[14] Mohammadi S, Abdalbeigi M. Analytical optimization of piezoelectric circular diaphragm generator. Advances in Materials Science and Engineering. 2013;2013.
[15] Liu C. Foundations of MEMS. Pearson Education India; 2012.
[16] Lee H, Kang D, Moon W. A micro-machined source transducer for a parametric array in air. The Journal of the Acoustical Society of America. 2009 Apr;125(4):1879-93.
[17] Thuau D, Abbas M, Wantz G, Hirsch L, Dufour I, Ayela C. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Scientific reports. 2016 Dec 7;6:38672.
[18] Zhu B, Zhang J, Varadan VK, Varadan VV. Solid state MOSFET-based hydrophone. InSmart Structures and Materials 2000: Smart Electronics and MEMS 2000 Jun 21 (Vol. 3990, pp. 368-377). International Society for Optics and Photonics.
[19] Bradley AT, Jaeger RC, Suhling JC, O'Connor KJ. Piezoresistive characteristics of short-channel MOSFETs on (100) silicon. IEEE Transactions on Electron Devices. 2001 Sep;48(9):2009-15.
[20] Banerji S, Goh WL, Cheong JH, Je M. CMUT ultrasonic power link front-end for wireless power transfer deep in body. 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO);2013 Dec 9; Singapore. IEEE;2014. p.1-3.
[21] میرعشقی علی. مبانی الکترونیک. تهران: نشر شیخ بهایی؛ 1387.(جلد1)