بررسی و مقایسۀ تجربی و تئوری میزان گذردهی آکوستیکی بدنه شناورهای کامپوزیتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

امواج آکوستیکی ناشی از کارکرد موتور و بقیه تجهیزات داخلی شناور، در صورت عبور از بدنه کامپوزیتی، موجب تشخیص شناور توسط مین‌های دریایی به‌ویژه مین‌های آکوستیکی می‌شود. در نتیجه کنترل و کاهش میزان صوت عبوری از بدنه شناور در مناطق عملیاتی مین‌گذاری شده، اهمیت حیاتی دارد. در این تحقیق با توجه به اهمیت عبور امواج آکوستیکی از بدنه شناورهای خاص، میزان عبور امواج آکوستیکی از مواد مختلف کامپوزیتی با ساختارهای لایه‌ای و ساندویچی در آب به صورت‌های تئوری و تجربی مورد ارزیابی و مقایسه قرار گرفته است. برای انجام آزمون‌ها، پنج عدد صفحه کامپوزیتی ساخته شده و پس از قراردادن آن‌ها در آب، میزان عبور امواج آکوستیکی از هر صفحه در دو بازۀ فرکانسی مختلف به‌صورت مجزا اندازه‌گیری شده است. نمونۀ اول پانل ساندویچی با هستۀ فوم پی‌وی‌سی و پوسته‌هایی مرکب از الیاف شیشه و کربن، نمونۀ دوم دارای ساختار لایه‌ای شامل چند لایه الیاف شیشه، نمونۀ سوم مانند نمونۀ دوم اما با تعداد لایه‌های بیشتر، نمونۀ چهارم پانل ساندویچی با هستۀ چوب بالسا و پوسته‌هایی شامل الیاف شیشه و نمونۀ آخر مانند نمونۀ چهارم اما با هستۀ فوم پی‌وی‌سی انتخاب شده است. در پایان نتایج مربوط به صفحه‌ها به‌صورت نمودار بیان شده و مقایسه‌های موردنیاز و کاربردی بین نتایج تجربی و محاسبات تئوری صورت گرفته است. نمونه‌های اول و آخر قابلیت جذب بیشتری نسبت به نمونه‌های دیگر دارند حتی نمونۀ اول که دارای الیاف کربن است، قابلیت آن کمی بهتر از نمونۀ آخر می‌باشد. قابل توجه است که نتایج به‌دست‌آمده نقش مهمی در انتخاب مواد کامپوزیتی و طراحی مناسب بدنۀ شناور کامپوزیتی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation and Comparison of the Experimental and Theory of the Sound Passivity Volume of the Composite Float

نویسندگان [English]

  • mehrzad behzadee
  • Reza Mardani
marine industrial
چکیده [English]

The sound waves caused by the engine's operation and the rest of the floating interior equipment, if passed through a composite body, are detected by floating sea mines, especially acoustic mines. As a result, controlling and reducing the amount of sound transmitted from the floating body in operating parts is critical. In this study, due to the importance of passing the acoustic waves from the body of the particular vessels, the acoustic waves of different composite materials with layered and sandwich structures in water were evaluated and compared theoretically and experimentally. Five composite sheets were made to perform the tests. After placing them in water, the transmittance of acoustic waves per page was measured separately in two different frequency ranges. The first example is a sandwich panel with a plating foam core and glass and carbon fiber sheaths; the second specimen has a layered structure consisting of several layers of glass fiber, a third specimen like a second but with more layers, a fourth sample of sandwich panels with white wood core and shells. The fiberglass and final specimen are selected as a fourth sample but with a doped foam core. In the end, the results of the pages are presented in the form of a diagram and the necessary and applied comparisons between the experimental results and the theoretical calculations were made. The first and last samples are more absorbent than other specimens, even the first carbon-fiber sample is slightly better than the last one. It should be noted that the obtained results play an important role in the selection of composite materials and the design of a floating composite fuselage.

کلیدواژه‌ها [English]

  • Composite floating
  • Audio transmissions
  • Composite materials
  • Sandwich panels
[1]  Yang TL, Chiang DM, Chen R. Development of a novel porous laminated composite material for high sound absorption. Journal of Vibration and Control. 2001 Jul;7(5):675-98.
[2]  Kuo YM, Lin HJ, Wang CN. Sound transmission across orthotropic laminates with a 3D model. Applied Acoustics. 2008 November; 69(11): 951–59.
[3]  Peters P, Nutt S. Wave speeds of honeycomb sandwich structures: An experimental approach. Applied Acoustics. 2010 February; 71(2): 115–19.
[4]  Shen C, Xin FX, Lu TJ. Theoretical model for sound transmission through finite sandwich structures with corrugated core. International Journal of Non-Linear Mechanics. 2012 Dec 1;47(10):1066-72.
[5]  Sargianis J, Suhr J. Core Material Effect on wave number and vibrational damping characteristics in carbon fiber sandwich composites. Composite Science and Technology.  2012 August; 72(13): 1493–99.
[6]  Sargianis J, Suhr J. Effect of core thickness on wave number and damping properties in sandwich composites. Composite Science and Technology. 2012 March;72(6): 724-30.
[7]  Rajaram S,Wang T, Nutt S.Sound transmission loss of honeycomb sandwich panels. Noise Control Eng. 2006 Mar/Apr; 54(2): 106-15.
[8]  Ng CF, Hui CK. Low frequency sound insulation using stiffness control with honeycomb panels. Applied Acoustics. 2008 April; 69(4):293-301.
[9]   Schaniel G, Morgenthaler, Knusel T, Butikofer R, Meier U. Analysis of Sound Transmission Loss of Sandwich Structures with Different Core Materials. Switzerland, Pilatus: Aircraft Ltd;2006.(vol.27)
[10]   Viscardi M, Napolitano P. Numerical prediction and experimental validation of sound transmission loss for sandwich panels. Computer and Mathematics in Automation and Materials Science.  2014; 22: 117-22.
[11]   Sutherland LS. A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites. Composite Structures. 2018 March;188: 197-208.
[12]   Selfridge AR. Approximate Material Properties in Isotropic Materials. Sonics and  Ultrasonics.1985 May; 32(3): 381-94.
[13] Kinsler LE, Frey AR, Coppens AB, James V. Fundamental of acoustics. 4rd ed.Wiley-VCH: USA; 1999. p.175-85.
 [14] Urick RJ. Principles of Underwater Sound.3rd ed. McGraw-Hill: USA;1983.p.160-90.
[15] Available from: https://www.diabgroup.com