مطالعه الگوی جابه جایی جریان برگشتی کانالیزه

نوع مقاله: مقاله پژوهشی

نویسنده

گروه علوم و فنون دریایی، دانشگاه آزاد اسلامی جویبار، جویبار

چکیده

جریان‌های برگشتی از مشهودترین عوارض در منطقۀ خیزاب ساحلی‌ محسوب می‌شوند. این عوارض از خط ساحل به سمت دریا امتداد دارند و دسته‌بندی آن‌ها طبق مکانیزم نیروهای کنترل‌کنندۀ حاکم بر منطقۀ خیزاب ساحلی است. در این پژوهش، نخست الگویی برای چگونگی نقل‌مکان کرانه ‌راستای جریان‌های برگشتی کانالیزه با استفاده از نرم‌افزار مایک 3/21ارائه شده است. در مرحلۀ بعدی الگوی ارائه‌شده از طریق رابطۀ سرک(CERC)  مورد صحت‌سنجی و تأیید قرار گرفته، سپس نتایج مدل با مشاهدات میدانی سایر محققین از طریق بررسی میانگین نرخ جابه‌جایی جریان برگشتی  (V) و سرعت جریان کرانه‌راستا (vl) مورد مقایسه قرار گرفتند که تطابق بسیار خوبی بین آن‌ها وجود داشته است. نتایج اصلی این تحقیق نشان می‌دهد که نقل‌مکان کرانه‌ راستای جریان‌های برگشتی کانالیزه به شیب بستر و عمق کانال‌های جریان‌ برگشتی وابسته است. نتایج دیگر این تحقیق نیز علت مساعد بودن سواحلی با حالت میانه را برای تشکیل این نوع خاص از جریان‌های برگشتی تشریح می‌کند.

 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Channel Rip Mobility Pattern

نویسنده [English]

  • Azade Valipour
چکیده [English]

Rip currents are the most visible features of surf zone that extend from the shoreline to the sea and are classified based on the mechanism of the controlling forces governing the surf zone. In this research, at first a pattern is presented to show the quality of the Channel rips mobility using the Mike21/3 software. In the next step, the presented pattern is verified and confirmed using the CERC equation. The results of the model are then compared with field observations of other researchers by examining the mean rip mobility rate (V) and alongshore current velocity (vl), which shows a very good agreement. The main finding of this study indicates that the longshore mobility of Channel rips depends on the bed slope and depth of the channels. In addition, it was found that the intermediate beaches are conducive to the formation of this particular type of rip currents.

کلیدواژه‌ها [English]

  • “Channel Rip”
  • “surf zone”
  • “longshore current”
  • “intermediate beach”

[1] MacMahan JH, Thornton EB, Stanton TP, Reniers AJHM. RIPEX: Observations of a rip current system. Marine Geology. 2005; 218(1-4): 113-34.

[2] Wright LD, Short AD, Green MO. Short term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model. Marine Geology. 1985; 62(3-4):339–364.

[3] Engle J, MacMahan J, Thieke RJ, Hanes DM, Dean RG. Formulation of a rip current predictive index using rescue data. National Conf. on Beach Preservation Technology. FSBPA; 2002. p.1-14.

[4] Lascody RL. East central Florida rip current program. National Weather Digest. 1998;22(2): 25–30.

[5] Luschine JB. A study of rip current drownings and weather related factors. National Weather Digest. 1991;191:11-19.

[6] Short AD, Hogan CL. Rip currents and beach hazards, their impact on public safety and implications for coastal management. Journal of Coastal Research. 1994;12(12):197–209.

[7] Castelle B, Ruessink BG. Modeling formation and subsequent nonlinear evolution of rip channels: Time-varying versus time invariant wave forcing. Journal of Geophysical Research. 2011; 116 (F04008). doi: 10.1029/2011 JF001997.

[8] Coco G, Murray AB. Patterns in the sand: From forcing templates to self-organization. Geomorphology. 2007;91(3):271-90.

[9] Holman RA, Symonds G, Thornton EB, Ranasinghe R. Rip spacing and persistence on an embayed beach. Journal of Geophysical Research: Oceans. 2006;111:1-17.

[10] Turner IL, Whyte D, Ruessink BG, Ranasinghe R. Observations of rip spacing, persistence and mobility at a long, straight coastline. Marine Geology. 2007;236(3-4): 209-21.

[11] Woods JE. Rip current/cuspate shoreline interactions in southern Monterey Bay [Master’s Thesis]. Naval Postgraduate School; 2005.

[12] Orzech MD, Thornton EB, MacMahan JH, O’Reilly WC, Stanton TP. Alongshore rip channel migration and sediment transport. Marine Geology. 2010; 271(3-4): 278–91.

[13] Castelle B, Scott T, Brander RW, McCarroll RJ. Rip Current Types, Circulation and Hazard. Earth-Science Reviews. 2016; 163: 1– 21.

[14] Benassai G, Aucelli P, Budillon G, De Stefano M, Di Luccio D, Di Paola G, Montella R, Mucerino L, Sica M, Pennetta M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Natural Hazards and Earth System Sciences. 2017;17(9);1493-503.

[15] Valipour A, Bidokhti AA. An analytical model for the prediction of rip spacingin intermediate beaches. Journal of Earth system Science. 2018; 127:108.

[16] Sandro R, Purba NP, Faizal I, Yuliadi LPS. Rip Current at Pangandaran and Palabuhan Ratu. Global Scientific Journal. 2018;6(6): 202-11.

[17] Short AD. Handbook of Beach and Shoreface Morphodynamics. Wiley, Chichester; 1999. p. 379

[18] Wright LD, short AD. Morphodynamic variability of surf zones and beaches. Marine Geology. 1984;56(1-4):93-118.

[19] DHI Software. MIKE 21 User Guide Manual; 2007.

[20] Bender CJ, Dean RG. Wave field modification by bathymetric anomalies and resulting shoreline changes: a review with recent results. Coastal Engineering. 2003;49:125-53.

[21] Bender CJ, Dean RG. Potential shoreline changes induced by three-dimensional bathymetric anomalies with gradual transitions in depth. Coastal Engineering. 2004;51:1143-161.

[22] Hanson H. GENESIS - a generalized shoreline change numerical model. Journal of Coastal Research. 1989;5:1-27.

[23] Ozasa H, Brampton AH. Mathematical modeling of beaches backed by seawalls. Coastal Engineering. 1980;4: 47-63.