ارزیابی انرژی باد فراساحلی جهت تامین انرژی الکتریکی سکوهای نفت و گاز فراساحلی دریای خزر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فیزیک دریا، دانشکدۀ منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور

2 دانشکده منابع طبیعی و علوم دریایی،دانشگاه تربیت مدرس، نور

چکیده

تحقیق پیش رو با هدف محاسبۀ انرژی باد فراساحلی در ترازهای مختلف جوی از سطح تا تراز 200 متری، میدان رژیم باد در سه حوضۀ شمالی، میانی و جنوبی دریای خزر بررسی شده است. در این زمینه دادة مؤلفه‌های سرعت باد پایگاه ECMWF  در ارتفاع 10 متر از سطح دریا با دقت مکانی 0/125 درجه و گام زمانی 6 ساعته، برای سال‌های 2005 تا 2014 گردآوری و با نرم‌افزار پایفرت میانگین سرعت و انرژی باد به‌صورت ماهانه و سالانه برای سه حوضۀ خزر بررسی و پتانسیل این منبع تجدیدپذیر برای تعدادی از مهم‌ترین میدان‌های هر حوضه ارزیابی شده است. یافته‌ها، حوضة میانی و شمالی را با مقدار میانگین سالانة انرژی، 1/4 و 1/6 مگاوات ساعت بر مترمربع در ارتفاع شاخص 10 متر نشان می‌دهند؛ به لحاظ بهره‌مندی از بیشینه انرژی باد برای تأمین بخشی از انرژی الکتریکی سکوهای نفت و گاز فراساحل مناسب هستند که این مقدار انرژی ارتفاعات بالاتر از سطح دریا افزایش می‌یابند. نتایج مقایسۀ میانگین توان تولیدی در توربین بادی زیمنس در ماه، در چهار میدان نفت و گاز فراساحلی نشان داد که میدان کاشگن واقع در حوضۀ شمالی، با میانگین ماهانه 448/8 مگاوات ساعت دارای بیشترین میزان توان تولیدی و میدان‌های گانشلی، سردار‌جنگل و اینکیه‌مور به ترتیب با توان تولیدی 336/6، 155/6و 119/4مگاوات ساعت در ماه به لحاظ توان خروجی در رتبه‌های بعدی قرار گرفته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Assessment of Offshore Wind Energy as a source of Electrical Energy for Offshore Oil and Gas Platforms of the Caspian Sea

نویسندگان [English]

  • Sajad Zereshkian 1
  • Dariush Mansoury 2
1 Department of Marine Physics, Faculty of Marine Science, Tarbiat Modares University, Nour, Iran
2 Department of Marine Physics, Faculty of Marine Science, Tarbiat Modares University, Nour, Iran
چکیده [English]

The present study aims to measure the offshore wind energy at different atmosphere levels, from the surface up to the level of 200 meters, examining the wind regime for the three northern, middle and southern basins of the Caspian Sea. In this regard, the data of wind speed components of ECMWF base at a height of 10m above the sea level with a spatial resolution of 0.125 and time step of 6-hours, collected for the years 2005 to 2014, then, using Pyferret software, the monthly and yearly average of wind speed and energy for the three Caspian basins was investigated; Afterwards, the potential of this renewable resource was evaluated for some of the most important fields in each basin. The findings indicate that the middle and northern basins with an average annual energy of 1.4 and 1.6  , respectively, at an indicator height of 10m are suitable for providing part of the electrical energy of the offshore oil and gas platforms in terms of benefiting from the maximum wind energy so that this amount of energy increases as the sea level boosts. The results of the comparison of the Siemens SWT-4.0-120 wind turbine output for four offshore oil and gas fields showed that the Kashgan field located in the Northern Basin has the highest output power with an average of 484.88  while the Guneshli, Sardar-e-Jangal and Inky-e-mor fields with an output power of 336.6.155.6 and 119.4 are placed in the next ranks, respectively.

کلیدواژه‌ها [English]

  • "Renewable Energies"
  • "Offshore Wind Energy"
  • "Oil and Gas Platforms"
  • "Caspian Sea"
[1]    Malmedal K, Sen PK, Candelaria J. Electrical energy and the petro-chemical industry: Where are we going? In 2011 Record of Conference Papers Industry Applications Society 58th Annual IEEE Petroleum and Chemical Industry Conference (PCIC) 2011 Sep 19 (pp. 1-8).
[2]  Gopal N. Use of Hywind in Oil and Gas Platforms to Reduce CO2 and NOx Gas Emission ]Master Thesis]. Norwegian University of Science and Technology: NTNU; 2016.
[3]  Twidell J, Weir T. Renewable Energy Resources. 2nd ed. London (UK): Taylor and Francis; 2006.
[4]  U.S. Energy Information Administration (EIA). Annual Energy Review (AER). Office of Energy Statistics: DOE/EIA; 2011 October. 407p. Report No: 061-003-01158-6.
[5]  Oliveira MF, Saidel MA, Queiroz ARS, Filho EN. Renewable sources at offshore petroleum and gas production platforms. Proceedings of the fifty ninth Annual Petroleum and Chemical Industry Conference; 2012 september 24-26; Chicago USA.
[6]  Rusu E, Onea F. Evaluation of the wind and wave energy along the Caspian Sea. Energy. 2013, February; 50(1):1-14.
[7]  Sempreviva AM, Barthelmie RJ, Pryor S. Review of methodologies for offshore wind resource assessment in European seas. Surveys Geophysics. 2008 Dec; 29(6):471-97.
[8]    Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind Energy Handbook. 2nd ed. USA: john Wiley; 2011.
[9]  Acker TL, Williams SK, Duque EP, Brummels G, Buechler J. Wind resource assessment in the state of Arizona inventory capacity factor and cost. Renewable Energy. 2007 Jul; 32(9):1453-66.
[10]  Amirinia G, Mazaheri S. Evaluation of Gulf of Oman for design and installation of offshore floating wind turbine. Proceedings of the First Iran wind energy conference; 2012 October 9-10; Tehran Iran. Berlin: ResearchGate; 2012. P. 1-6.
[11] Hernandez-Escobedo Q, Manzano-Agugliaro F, Zapata-Sierra A. The wind power of Mexico. Renewable and Sustainable Energy Reviews. 2010, December; 14(9): 2830-840.
[12] Amirinia G, Jung S. Time domain analysis of unsteady aerodynamic forces on a parked wind turbine tower subjected to high winds. Proceedings of the eighth International colloquium on bluff body aerodynamics and applications Conference; 2016 June 7-11; Boston USA. Berlin: ResearchGate; 2016. p. 1-10.
[13] Amirinia G, Jung S, Alduse B P. Effect of different hurricane spectrums on wind turbine loads and responses. Proceedings of the AWEA wind power conference; 2015 May; Orlando USA. Berlin: ResearchGate; 2015. p. 1-10.
[14]  Jimenez B, Durante F, Lange B, Kreutzer T, Tambke J. Offshore wind resource assessment with WAsP and MM5 comparative study for the German Bight. Wind Energy. 2007 Mar; 10(2): 121-34.
[15] Esteban MD, Diez JJ, Lopez JS, Negro V. Why offshore wind energy? Renewable Energy. 2011 Feb; 36(2): 444-50.
[16] Svendsen HG, Hadiya M, Veirød Øyslebø E, Uhlen K. Integration of offshore wind farm with multiple oil and gas platforms. Proceedings of the IEEE Trondheim PowerTech Conference; 2011 June; Trondheim, Norway. USA: IEEE; 2011. p. 1-6.
[17]  European Wind Energy Association (EWEA). Wind in our sails: the coming of Europe’s offshore wind energy industry. Brussels: EWEA; 2011 November. 93p.
[18] Kosarev AN. The Caspian Sea Environment. Berlin: Springer-Verlag; 2005. Chapter 1, Physico-Geographical Conditions of the Caspian Sea; p. 5-31.
[19] Dumont HJ, Tamara AS, Ulrich N. The Ctenophores Mnemiopsis leidyi and Beroe in the Ponto-Caspian and other Aquatic Invasions. In: Dumont HJ, Tamara AS, Ulrich N editors. Aquatic invasions in the Black, Caspian, and Mediterranean seas. Boston: Kluwer Academic Publisher; 2004. p. X-314. (NATO Science Series IV: Earth and Environmental Sciences; Vol 35).
[20] Anil M. Gains of regional cooperation of Caspian Sea: Environmental problems and solutions. Bonn: ECON Store; 2004. Chapter 1: The Physical Environment in the Caspian; p. 1-41.
[21] Zabihian F, Fung AS. Review of marine renewable energies: Case study of Iran. Renewable and Sustainable Energy Reviews. 2011, June; 15(5):2461–74.
[22] Amirahmadi H ,editor. The Caspian Region at a crossroad: challenges of a new frontier of energy and development. UK: Palgrave Macmillan; 2000.
[23]   سفیدپری پریا، کیهانی علیرضا، پیشگرکومله سید حسین، خانعلی مجید، اکرم اسدالله. پتاسیل‌سنجی تولید انرژی باد به کمک تحلیل آماری مشخصه‌های باد- مطالعه موردی: شهرستان اقلید در استان فارس. مهندسی بیوسیستم. 1395، مهر؛ 47(3): 469-483.
[24]  Al-Mohamad A, Karmeh H. Wind energy potential in Syria. Renewable Energy. 2003 Sep; 28(7): 1039-46.
[25]  Gadad S, Chandra Deka P. Offshore wind power resource assessment using Oceansat-2scatterometer data at a regional scale. Applied Energy. 2016 Jun; 176(c):157-70.
[26]  Salvação N, Bernardino M, Guedes Soares C. In: Guedes Soares C, López Peña F editors. The offshore wind energy potential along the coasts of Portugal and Galicia Developments in Maritime Transportation and Exploitation of Sea Resources Assessing. 1st ed. Francis & Taylor Group; 2014.
[27]  Tiong YK, Zahari MA, Wong SF, Dol SS. The Feasibility of Wind and Solar Energy Application for Oil and Gas Offshore Platform. Proceedings of the Materials Science and Engineering Conference; 2015 April; China: IOP Publishing; 2015. p. 1-9.
[28]  Offshore Technology Focous. Kashagan Offshore Oil Field Project [Internet]. 2018 [Updated 2018 Febrevery 24]. Available from: https://www.offshoretechnology.com/ projec ts/kashagan
[29] KAZinform Commercial Oil Output Commences at Kashgan Minister [Internet]. 2016 [2016 November 21 Cited]. Available from: https://www.inform.kz/en/commercial-oil-output-commences-at-kashagan minister_ a2971 818
[30]  Yusufzade KH. Accomplishments of the Caspian Oil Explorations. Petroleum Geology. 1978 Sep; 15(9):403-4.
[31] Oil & Gas Journal. Dagestan offers Caspian exploration blocks [Internet]. 1997[1997 December 19 Cited]. Available from: https://www.ogj.com/articles/print/volume-95/issue-52/in-this-issue/exploration/dagest an-offers-caspian-exploration-blocks.html
[32]  Chmeleva I. Outlook for Offshore Exploration in Russia up to 2025 [Internet]. 2014 [2014 September 9 Cited]. Available from: https://rogtecmagazine.com/developm ent?p=11974
[33]  Tozer R S J, Borthwick A M. Variation in fluid contacts in the Azeri field,Azerbaijan: sealing faults or hydrodynamic aquifer? Geological Society London Special Publications. 2010, November; 347(1):103-12.
[34]مارین تایمز. معرفی میدان سردار جنگل به سرمایه‎گذاران خارجی [اینترنت]. 1394 [8، آذر، 1394]. قابل‌دسترس در http://marinetimes.ir/fa/news/5576