شبیه سازی تاثیر نوع گاز نجیب حل شده بر شدت تابش تک حباب سونولومینسانسی ایستا در سیال آب و اسید فسفریک 65%

نوع مقاله: مقاله پژوهشی

نویسنده

هیات علمی- دانشگاه پیام نور

چکیده

در این مقاله با استفاده از مدل هیدروشیمیایی و مکانیسم برم اشترلانگ حرارتی و الگوریتم رانگ-کوتا مرتبۀ چهار تأثیر نوع گاز نجیب حل‌شده در سیال بر پارامترهای خروجی تک‌حباب سونولومینسانسی ایستا در دو سیال پایه آب و اسید فسفریک  65% به‌عنوان غلظت بهینه اسید فسفریک به‌صورت عددی، موردبررسی قرار گرفته است. برای داشتن تک‌حباب سونولومینسانسی ایستا و پایدار و محاسبۀ پارامترهای اولیه حباب شامل شعاع و دامنۀ فشار آکوستیکی، ناپایدارهای شکلی، انتشاری و مکانی با استفاده از نمودار فاز بررسی و از پارامترهای به‌دست‌آمده در محاسبه‌ها  استفاده شد. نتایج نشان می‌دهد که در هر دو سیال آب و اسید فسفریک  65% با افزایش جرم اتمی گاز نجیب حل‌شده در سیال از He به Xe  شاهد افزایش دما و شدت تابش تک‌حباب  ایستا در لحظۀ فروریزش هستیم که انطباق بسیار خوبی  با نتایج آزمایشگاهی موجود از خود نشان می‌دهد. علاوه براین  شبیه‌سازی عددی نشان  می‌دهد  که در سیال آب با افزایش جرم اتمی گاز نجیب بازۀ زمانی فروریزش حباب افزایش می‌یابد، حال آنکه در سیال اسید فسفریک 65% عکس این حالت اتفاق می‌افتد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of the Effect of Noble Gas Content on the Radiation of Static Single Bubble Sonoluminescence in Water and Phosphoric Acid 65wt%

نویسنده [English]

  • morteza pishbini
Assistant Professor- Payame Noor University
چکیده [English]

In this paper, by using a hydrochemical model and thermal bremsstrahlung mechanism and four -order Runge- Kutta algorithm the dependence of static single bubble sonoluminescence in water and phosphoric acid 65wt% solutionas the optimal concentration of phosphoric acid on noble gas content are numerically investigated. In order to have stable single bubble sonoluminescence and calculation initial parameters of the bubble such as initial radius of the bubble and acoustic pressure amplitude, three forms of instability named shape, diffusion and position instability are considered simultaneously in a region which named phase space diagram and parameters have been used in the calculations. Numerical results show that sonoluminescence temperature and intensity from phosphoric acid 65wt% solution at the moment of collapse are considerably greater than that of water fluid. In addition, as the atomic mass of the noble gas content in fluids increased from He to Xe the static single bubble sonoluminescence temperature and intensity in the collapse time remarkably increased which is in good agreement with available experimental results.Furthermore, numerical simulations show that in water the time of the collapse increases with the atomic mass of the noble gases, while in the liquid phosphoric acid 65% the time of the collapse decreases.

کلیدواژه‌ها [English]

  • Single Bubble Sonoluminescence
  • Hydrochemical Model
  • Thermal Bremsstrahlung Mechanism

[1] Gaitan DF, Crum LA, Church CC, Roy RA. Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. The Journal of the Acoustical Society of America. 1992 Jun;91(6):3166-83.

[2] Brenner MP, Hilgenfeldt S, Lohse D. Single bubble Sonoluminescence. Reviews of Modern Physics. 2002;74(2):425-484.

[3] Vazquez GE, Putterman SJ. Temperature and pressure dependence of Sonoluminescence. Physical Review Letters. 2000;85(14):3037-3040.

[4] Troia A, Ripaa DM, Spagnolo R. Moving single bubble Sonoluminescence in phosphoric acid and sulfuric acid solutions. Ultrasonics Sonochemistry. 2006;13(3):278-282.

[5] Moshaii A, Imani K, Silatani M. Sonoluminescence radiation from different concentrations of sulfuric acid. Physical Review E. 2009; 80(1):0463251-7.

[6] Pishbini M, Shokri AA. Dependence of Single Bubble Sonoluminescence Radiation to Host Liquid, Acoustic Pressure and Noble Gas. Indian Journal of Science and Technology. 2015 Nov 1;8(29).

[7] Pishbini M, Sadighi-Bonabi R. A new source of radiation in single bubble sonoluminescence. Pramana journal of physics. 2017;88: 72-78.

[8] Taleyarkhan RP, Cho JS, West CD, Lahey RT, Nigmatulin RI, Block RC. Evidence for nuclear emissions during acoustic cavitation. Science. 2002; 295:1868-1873.

[9] Hopkins SD, Putterman SJ, Kappus BA, Suslick KS, Camara CG. Dynamics
of a sonoluminescing bubble in sulfuric acid. Physical Review Letters. 2005; 95: 254301.

 [10] Hiller R, Weninger K, Putterman SJ, Barber BP. Effect of noble gas doping in single - bubble sonoluminescence. Science. 1994; 266: 248-50.

 [11] Arakeri VH. Influence of various gases on single bubble sonoluminescence. Pramana journal of physics. 1993; 41(3): 291-94.

 [12] Kwak H, Na JH. Hydrodynamic solutions for a sonoluminescing gas
bubble. Physical Review Letters. 1996; 77: 4454.

[13] Ruuth SJ, Putterman S, Merriman B. Molecular dynamics simulation of the response of a gas to a spherical piston: Implications for sonoluminescence. Physical Review E. 2002 Sep 20;66(3):036310.

[14] Matsumoto M, Miyamoto K, Ohguchi K, Kinjo T. Molecular dynamics simulation of a collapsing bubble. Progress of Theoretical Physics Supplement. 2000 Apr 1;138:728-9.

[15] Yasui K. Alternative model of single-bubble sonoluminescence. Physical Review E. 1997; 56:6750-60.

[16] Moshaii A, Sadighi-Bonabi R. Role of liquid compressional viscosity in the dynamics of a sonoluminescencing bubble. Physical Review E. 2004; 70(1):016304.

[17] Keller JB, Miksis M. Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America. 1980 Aug;68(2):628-33.

[18] Lu X, Prosperetti A, Toegel R, Lohse D. Harmonic
enhancement of single-bubble sonoluminescence. Physical Review E. 2003;67:056310.

[19] Moshaii A, Rezaei-Nasirabad R, Imani KH, Silatani M, Sadighi-Bonabi R. Role of thermal conduction on single bubble cavitation. Physics Letters A. 2008;372:1283.

[20] Toegel R,
Hilgenfeldt S, Lohse D. Suppressing dissociation in sonoluminescencing bubbles: the effect of excluded. Physical Review Letters. 2002;88:034301-4.

[21] Yasui K.
Mechanism of single-bubble sonoluminescence. Physical Review E. 1999;60:1754.

[22] Wu CC, Roberts PH. Shock wave propagation in a sonoluminescing gas
bubble. Physical Review Letters. 1993;70:3424.

[23] Rybicki GB, Lightman AP. Radiative processes in Astrophysics. New York: Wily interscience; 1979.

[24] Taylor RL, Caledonia G. Experimental determination of the cross-sections for neutral Bremsstrahlung: I. Ne, Ar and Xe. Journal of Quantitative Spectroscopy and Radiative Transfer. 1969 May 1;9(5):657-79.

[25] Barber BP, Hiller R, Lofstedt R, Putterman S, Weninger K. Defining the Unknowns of Sonoluminescence. Physics Reports. 1997;281:65-143.

[26] Xu H, Suslick K. Molecular emission and temperature measurements from single bubble Sonoluminescence. Physical Review Letters. 2010;104(24):244301-4.

[27] Flannigan D, Suslick SK. Molecular and atomic emission during single – bubble cavitation in concentrated sulfuric acid. Acoustic Research Letters Online. 2005;157-61.