تعیین ثوابت مادی معیارتسلیم/شکست خان-لیو با استفاده از روش‌های بهینه‌سازی الگوریتم ژنتیک و انبوه ذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی مالک اشتر

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان

3 دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی- واحد اراک، اراک

چکیده

تعیین بهینة ثوابت مادی یک معیار رفتاری ماده، به یکی از روش‌های بهینه‌سازی پیشرفته و با داشتن کمترین داده‌های آزمون‌های تجربی، مورد توجه طراحان است. معیار تسلیم/شکست خان-لیو یکی از معیارهای نسبتاً دقیق و کاربرپسند برای پیش‌بینی رفتار آلیاژهایی مانند تیتانیوم 4-6 است. این معیار با داشتن ده ثابت مادی می‌تواند اثرات عوامل مختلف مانند عدم تقارن در کشش و فشار، ناهمسانگردی، فشار هیدرواستاتیک، نرخ کرنش و دما را به‌صورت غیرهمبسته مد نظر قرار دهد. روندنماهای تکاملی روش‌های مناسبی برای به‌دست آوردن ثوابت معادله‌های رفتاری مواد به‌صورت بهینه هستند. در این کار  ما از روش‌های بهینه‌سازی روندنمای ژنتیک و انبوه‌ ذرات که از روندنماهای تکاملی به‌شمار می‌روند، برای تعیین ثوابت معیار خان-‌لیو استفاده کرده‌ایم. نتایج آزمون‌های کشش  و فشار تک‌محوره در دو راستای نورد و عرضی ورق آلیاژتیتانیوم 4-6 در دماهای مختلف و در نرخ کرنش یک بر ثانیه به‌کار رفته‌اند و نقاط دو‌محوره‌-مساوی به‌صورت محاسباتی استفاده شده‌اند. نتایج نشان می‌دهند که روش بهینه‌سازی انبوه ذرات نسبت به روندنمای ژنتیک پاسخ‌های بهتری دارد. پس پیشنهاد می‌شود که برای تعیین ثوابت این معیار از روش یادشده استفاده شود. روش‌شناسی استخراج ثوابت مادی با دو روندنمای ژنتیک و انبوه ذرات و جنبه‌های توسعه و بهبود معیار خان-‌لیو از نتایج این تحقیق هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Material Constants of Khan-Liu Yield/ Fracture Criterion by Genetic Algorithm and Particle Swarm Optimization Methods

نویسندگان [English]

  • Farhad Farhadzadeh 1
  • Mehdi Salmani Tehrani 2
  • Mehdi Tajdari 3
1 Malek Ashtar University of Technology
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
3 Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

Optimal determination of material constants of behavior criteria with minimal number of experimental test data is of interest to designers. Khan-Liu yield/fracture criterion is one of the comparatively accurate and user-friendly criteria to predict behavior of alloys such as Ti-6Al-4V alloy. This criterion with ten constants can take into account effects of parameters such as asymmetry in tension and compression, anisotropy, hydrostatic pressure, strain rate and temperature as uncoupled. Evolutionary algorithms are optimally suitable methods for determining the materials behavior equations constants. In this article, the genetic algorithm and particle swarm optimization methods are used to determine the material constants of Khan-Liu criterion. Experimental results of uniaxial tension and compression tests in two directions, rolling and transverse direction of Ti-6Al-4V sheet, at different temperatures with 1 sec-1 strain rate are used. From these data equal-biaxial points were calculated. After applying two algorithms on these data, results showed that particle swarm optimization is better than genetic algorithm. Therefore, this method is suggested to determine the constants of this criterion. The material constants extraction methodology with two genetic algorithm and particle swarm optimization, as well as aspects of the development and improvement of Khan-Liu criterion are results of this paper.

کلیدواژه‌ها [English]

  • Yield/fracture criterion
  • Constitutive equations
  • Ti-6Al-4V alloy
  • genetic algorithm
  • Particle Swarm Optimization
[1] Odenberger EL, Hertzman J, Thilderkvist P, Merklein M, Kuppert A, Stöhr T, et al. Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V–PART 1: Material characterisation. International journal of material forming. 2013;6(3):391-402.
[2] Khan AS, Liu H. Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. International Journal of Plasticity. 2012;37:1-15.
[3] Khan AS, Yu S. Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part I: Experiments. International Journal of Plasticity. 2012;38:1-13.
[4] Khan AS, Yu S, Liu H. Deformation induced anisotropic responses of Ti–6Al–4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion. International Journal ofPlasticity. 2012;38:14-26.
[5] Boresi AP, Schmidt RJ, Sidebottom OM. Advanced mechanics of materials: Wiley New York; 1993.
[6] Banabic D. Sheet metal forming processes: constitutive modelling and numerical simulation. Springer Science & Business Media; 2010 Jun 21.
[7] Lin Y, Chen X-M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design. 2011;32(4):1733-59.
[8] Mendelson A. Plasticity, theory and application. New York, NY :
Macmillan; 1968.
[9] Jacob L. Plasticity theory. New York: Macmillan Publishing Company; 1990.
[10] Banabic D, Barlat F, Cazacu O, Kuwabara T. Advances in anisotropy and formability. International journal of material forming. 2010;3(3):165-89.
[11] Khan AS, Liu H. A new approach for ductile fracture prediction on Al 2024-T351 alloy. International Journal of Plasticity. 2012;35:1-12.
[12] Fields D, Backofen W, editors. Determination of strain hardening characteristics by torsion testing. Proc ASTM; 1957.
[13] Zhang X. Experimental and numerical studyof magnesium alloy during hot-working process[disseration]. Univ. Shanghai Jiaotong ersity; 2003.
[14] Cheng YQ, Zhang H, Chen ZH, Xian KF. Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation. Journal of materials processing technology. 2008;208(1):29-34.
[15] Johnson GR, Cook WH, editors. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics; 1983: The Hague, TheNetherlands.
[16] Khan AS, Suh YS, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plasticity. 2004;20(12):2233-48.
[17] Farhadzadeh F, Tajdari M, Salmani-Tehrani M. Determining material constants Khan-Huang-Liang criterion by genetic algorithm and particles swarm optimization method for Ti-6Al-4V alloy. 7th International Offshore Industries Conference, to Persian; 2017.
[18] Farhadzadeh F, Salmani-Tehrani M, Tajdari M. Determining biaxial tensile stresses by fracture cruciform specimen at different temperatures and strain rates for Ti–6Al–4V alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2018;40(11):532.
[19] Barsoum I. The effect of stress state in ductile failure[disseration]. univ.KTH, School of Engineering Sciences (SCI), Solid Mechanics; 2008.
[20] Akhtar SK, Huang S. Continuum theory of plasticity. USA: A Wiley Inerscience Publication, John Wiley and Sons, Inc; 1995.
[21] Altenbach H, Öchsner A. Plasticity of Pressure-Sensitive Materials. Springer; 2014.
[22] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1948 May 27;193(1033):281-97.
[23] Khan AS, Huang S. Continuum theory of plasticity. John Wiley & Sons; 1995.
[24] Chen WF, Han DJ. Plasticity for structural engineers. Springer Science & Business Media; 2012.
[25] Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press; 1975.
[26] Goldberg DE. Genetic algorithms in search, optimization, and machine learning, addison-wesley, reading, ma, 1989. NN Schraudolph and J. 1989;3(1).
[27] Janikow CZ, Michalewicz Z, editors. An experimental comparison of binary and floating point representations in genetic algorithms. ICGA; 1991.
[28] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Network; 1995;Perth, WA, Australia. doi: 10.1109/ICNN.1995.488968.
 [29] Geiger M, Hußnätter W, Merklein M. Specimen for a novel concept of the biaxial tension test. Journal of Materials Processing Technology. 2005;167(2):177-83.
[30] Hannon A, Tiernan P. A review of planar biaxial tensile test systems for sheet metal. Journal of materials processing technology. 2008;198(1):13-1.